Empirical Comparison of Forecasting Methods for Air Travel and Export Data in Thailand
Abstract
:1. Introduction
2. Related Work
3. Data Collection and Methodology
- Data Collection
- -
- TS1–TS6: Airports of Thailand Public Company Limited
- -
- TS7: The Information and Communication Technology Center, Office of the Permanent Secretary of the Ministry of Commence, in cooperation with the Thai Customs Department
- -
- TS8: Customs Department, Ministry of Finance
- -
- TS9–TS10: Office of Agricultural Economics, Ministry of Agriculture
- 2.
- Data Analysis and Preparation
- 3.
- Forecasting Model Development
- -
- The Holt–Winters exponential smoothing method, initialized with seven initializations for both additive and multiplicative models;
- -
- The Bagging Holt–Winters method, which utilized the original initializations along with moving block bootstrap techniques, varying the block size (p) between 2 and 12 for both the additive and multiplicative models;
- -
- The Box–Jenkins method, which is a model based on autoregressive and moving-average components.
- 4.
- Forecast Evaluation
- 5.
- Conclusion and Comparison
3.1. The Holt–Winters Method
3.2. The Bagging Holt–Winters (BHW) Method
3.3. The Box–Jenkins Method
4. Result
4.1. Results from the Holt–Winters Method
4.2. Results from the Bagging Holt–Winters Method
4.3. Results from the Box–Jenkins Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suppalakpanya, K.; Nikhom, R.; Booranawong, A.; Booranawong, T. An Evaluation of Holt-Winters Methods with Different Initial Trend Values for Forecasting Crude Palm Oil Production and Prices in Thailand. Suranaree J. Sci. Technol. 2019, 26, 13–22. [Google Scholar]
- Hansun, S. New estimation rules for unknown parameters on Holt-Winters multiplicative method. J. Math. Fundam. Sci. 2017, 49, 249–260. [Google Scholar] [CrossRef]
- Trull, O.; Garcia-Diaz, J.C.; Troncoso, A. Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models. Mathematics 2020, 8, 268. [Google Scholar] [CrossRef]
- Wongoutong, C. Improvement of the Holt-Winters Multiplicative Method with a New Initial Value Settings Method. Thail. Stat. 2021, 19, 280–293. [Google Scholar]
- Bergmeir, C.; Hyndman, R.J.; Benitez, J.M. Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation. Int. J. Forecast. 2016, 32, 303–312. [Google Scholar] [CrossRef]
- Dantas, T.M.; Oliveria, L.C.; Repolho, M.V. Air Transportation demand forecast through Bagging Holt-Winters methods. J. Air. Transp. Manag. 2017, 59, 116–123. [Google Scholar] [CrossRef]
- Tayib, S.A.M.; Nor, S.R.M.; Norrulashikin, S.M. Forecasting on the Crude Palm Oil Production in Malaysia using SARIMA Model. J. Phys. Conf. Ser. 2021, 1988, 012106. [Google Scholar] [CrossRef]
- Alam, T. Forecasting exports and imports through an artificial neural network and autoregressive integrated moving average. Decis. Sci. Lett. 2019, 8, 249–260. [Google Scholar] [CrossRef]
- Lee, J.Y.; Nguyen, T.-T.; Nguyen, H.-G.; Lee, J.Y. Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe. Energies 2022, 15, 4003. [Google Scholar] [CrossRef]
- Yang, C.H.; Lee, B.; Jou, P.H.; Lin, Y.D. Analysis and forecasting of international airport traffic volume. Mathematics 2023, 11, 1483. [Google Scholar] [CrossRef]
- Himakireet, K.; Vishnu, T. Air passengers occupancy prediction using the ARIMA Model. Int. J. Appl. Eng. Res. 2019, 14, 646–650. [Google Scholar]
- Al-Sultan, A.; Al-Rubkhi, A.; Alsaber, A.; Pan, J. Forecasting air passenger traffic volume: Evaluating time series models in long-term forecasting of Kuwait air passenger data. Adv. Appl. Stat. 2021, 70, 69–89. [Google Scholar] [CrossRef]
- Hopfe, D.H.; Lee, K.; Yu, C. Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models. J. Air Transp. Manag. 2024, 115, 102525. [Google Scholar] [CrossRef]
- Ghauri, S.P.; Ahmed, R.R.; Streimikiene, D.; Streimikis, D. Forecasting exports and imports by using autoregressive (AR) with seasonal dummies and Box-Jenkins approaches: A case of Pakistan. Inz. Ekon.-Eng. Econ. 2020, 31, 291–301. [Google Scholar] [CrossRef]
- Kamoljitprapa, P.; Polsen, O.; Abdullahi, U.K. Forecasting of Thai international imports and exports using Holt-Winters and autoregressive integrated moving average models. J. Appl. Sci. Emerg. Technol. 2023, 22, 1–9. [Google Scholar] [CrossRef]
- Chatfield, C. The Analysis of Time Series, 5th ed.; Chapman & Hall: New York, NY, USA, 1996. [Google Scholar]
- Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20, 5–10. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting Principle and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Kalekar, P.S. Time Series Forecasting Using Holt-Winters Exponential Smoothing; Kanwal Rekhi School of Information Technology: Mumbai, India, 2004; pp. 1–13. [Google Scholar]
- Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting, 2nd ed.; Wiley Series in Probability and Statistics; John Wiley &Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bowerman, B.L.; O’Connell, R.T.; Koehler, A.B. Forecasting, Time Series, and Regression: An Applied Approach, 4th ed.; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2005. [Google Scholar]
- Koehler, A.B.; Murphree, E.S. A comparison of the Akaike and Schwarz Criteria for Selection Model Order. J. R. Stat. Soc. Ser. C. Appl. Stat. 1988, 37, 187–195. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis Forecasting and Control; Prentice Hall: Hoboken, NJ, USA, 1994. [Google Scholar]
- Clements, M.P.; Hendry, D.F. On the Limitations of Comparing Mean Square Forecast Errors. J. Forecast. 1993, 12, 617–637. [Google Scholar] [CrossRef]
Dataset | Description | Training Set | Testing Set | Unit | Size |
---|---|---|---|---|---|
TS1 | The number of flights at Hat Yai Airport | January 2003–December 2018 | January–December 2019 | Flights | 204 |
TS2 | The number of flights at Mae Fah Luang Airport | January 2003–December 2018 | January–December 2019 | Flights | 204 |
TS3 | The number of flights at Phuket Airport | January 2003–December 2018 | January–December 2019 | Flights | 204 |
TS4 | The number of passengers at Hat Yai Airport | January 2003–December 2018 | January–December 2019 | Passengers | 204 |
TS5 | The number of passengers at Mae Fah Luang Airport | January 2003–December 2018 | January–December 2019 | Passengers | 204 |
TS6 | The number of passengers at Phuket Airport | January 2003–December 2018 | January–December 2019 | Passengers | 204 |
TS7 | Thailand’s export value of diamond jewelry | January 2007–December 2018 | January–December 2019 | THB Million | 156 |
TS8 | Thailand’s export value of air conditioners | January 2007– December 2018 | January–December 2019 | THB Million | 156 |
TS9 | Thailand’s export value of jasmine rice | January 2011– December 2018 | January–December 2019 | THB | 108 |
TS10 | Thailand’s export amount of orchid flowers | January 2011–December 2018 | January–December 2019 | Tons | 108 |
Multiplicative Model | Additive Model | |
---|---|---|
Forecasting equation | ||
Smoothing equation for the level | ||
Smoothing equation for the growth rate | ||
Smoothing equation for the seasonality |
Pattern | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
Multiplicative model | TS1 | 101.38 | 102.66 | 101.48 | 99.21 | 99.24 | 98.81 | 75.31 |
TS2 | 97.43 | 103.43 | 101.25 | 97.18 | 96.97 | 97.29 | 53.40 | |
TS3 | 321.11 | 344.50 | 344.62 | 321.61 | 320.69 | 319.11 | 289.90 | |
TS4 | 13,704.23 | 14,193.85 | 13,794.38 | 13,412.03 | 13,498.99 | 13,399.81 | 10,120.57 | |
TS5 | 6772.80 | 7018.46 | 7117.13 | 6674.28 | 6655.91 | 6754.45 | 5465.08 | |
TS6 | 67,879.72 | 66,952.01 | 74,638.98 | 66,904.73 | 66,909.18 | 66,883.76 | 50,850.33 | |
TS7 | 769.44 | 967.08 | 769.10 | 776.89 | 765.63 | 764.69 | 724.90 | |
TS8 | 1216.87 | 1641.35 | 1319.08 | 1881.05 | 1161.80 | 1159.89 | 1042.99 | |
TS9 | 45,053,909.70 | 59,049,546.98 | 46,947,995.54 | 72,509,778.12 | 44,380,923.82 | 44,780,984.87 | 38,439,300.23 | |
TS10 | 166,946.62 | 399,691.40 | 336,099.41 | 159,449.04 | 170,528.69 | 173,582.53 | 121,625.17 | |
Additive model | TS1 | 86.77 | 88.60 | 87.81 | 86.12 | 86.15 | 85.96 | 80.40 |
TS2 | 68.56 | 71.62 | 71.03 | 69.13 | 68.99 | 68.93 | 59.72 | |
TS3 | 255.66 | 275.03 | 275.13 | 258.28 | 257.58 | 257.40 | 235.68 | |
TS4 | 12,066.21 | 12,389.81 | 12,271.57 | 11,912.45 | 12,027.13 | 12,005.62 | 11,589.46 | |
TS5 | 6789.03 | 7195.65 | 7245.01 | 6786.91 | 6797.05 | 6971.75 | 6789.55 | |
TS6 | 59,639.96 | 60,276.97 | 65,120.69 | 59,880.30 | 60,055.68 | 59,948.85 | 64,953.07 | |
TS7 | 744.50 | 1032.28 | 754.02 | 748.28 | 746.52 | 745.00 | 742.22 | |
TS8 | 1240.01 | 1834.03 | 1403.28 | 1473.52 | 1328.42 | 1335.83 | 1170.63 | |
TS9 | 44,342,017.33 | 69,780,483.81 | 43,298,889.89 | 49,882,816.55 | 43,522,351.96 | 46,394,967.72 | 37,830,302.92 | |
TS10 | 196,824.27 | 367,185.86 | 345,538.29 | 212,067.27 | 204,509.47 | 175,017.99 | 124,797.96 |
Random Block Size (p) | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Multiplicative model | TS1 | 82.70 | 71.11 | 70.83 | 72.58 | 80.61 | 87.83 |
TS2 | 84.90 | 76.86 | 72.10 | 69.56 | 67.74 | 69.15 | |
TS3 | 275.65 | 252.98 | 250.18 | 258.95 | 264.56 | 295.12 | |
TS4 | 11,412.72 | 10,754.47 | 10,188.57 | 10,000.36 | 10,024.96 | 10,417.43 | |
TS5 | 6065.07 | 6416.12 | 6995.61 | 7381.25 | 7514.37 | 7666.53 | |
TS6 | 59,032.18 | 54,228.62 | 53,652.81 | 55,614.84 | 58,792.91 | 60,989.00 | |
TS7 | 649.17 | 639.75 | 640.71 | 636.92 | 635.04 | 642.92 | |
TS8 | 819.50 | 717.33 | 772.17 | 820.46 | 853.68 | 882.76 | |
TS9 | 35,940,193.27 | 34,409,778.99 | 35,202,318.80 | 35,047,816.73 | 34,804,095.04 | 34,021,198.67 | |
TS10 | 148,937.99 | 140,922.50 | 137,810.14 | 140,662.12 | 137,073.66 | 133,469.58 | |
(p) | 8 | 9 | 10 | 11 | 12 | ||
Multiplicative model | TS1 | 94.98 | 97.24 | 100.81 | 100.06 | 100.32 | |
TS2 | 66.47 | 67.37 | 64.54 | 67.08 | 63.45 | ||
TS3 | 308.30 | 310.00 | 316.93 | 325.34 | 320.98 | ||
TS4 | 10,841.06 | 11,202.22 | 11,387.97 | 11,444.91 | 11,473.65 | ||
TS5 | 7,926.50 | 7,973.80 | 8,014.21 | 8,090.47 | 8,046.76 | ||
TS6 | 60,856.69 | 62,714.25 | 61,841.57 | 61,930.34 | 62,108.70 | ||
TS7 | 643.51 | 651.15 | 650.85 | 664.45 | 671.44 | ||
TS8 | 945.85 | 981.37 | 1013.39 | 1012.69 | 1041.67 | ||
TS9 | 33,945,554.73 | 33,551,426.54 | 33,758,278.31 | 33,049,497.23 | 32,363,639.86 | ||
TS10 | 407,429.11 | 125,920.24 | 122,018.94 | 118,661.36 | 119,667.59 |
Random Block Size (p) | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Additive model | TS1 | 58.41 | 51.01 | 57.94 | 63.45 | 70.13 | 76.75 |
TS2 | 46.84 | 36.30 | 40.05 | 42.71 | 47.95 | 52.31 | |
TS3 | 186.18 | 130.74 | 146.37 | 161.14 | 180.75 | 187.94 | |
TS4 | 9292.69 | 9461.78 | 9031.66 | 9272.46 | 9113.29 | 9703.89 | |
TS5 | 4761.46 | 4241.29 | 4651.22 | 5196.47 | 5794.02 | 6480.83 | |
TS6 | 42,796.01 | 43,563.13 | 48,494.91 | 52,749.36 | 55,451.75 | 57,726.57 | |
TS7 | 649.50 | 654.95 | 663.24 | 667.47 | 665.48 | 675.80 | |
TS8 | 775.99 | 697.19 | 754.94 | 787.34 | 866.73 | 912.05 | |
TS9 | 37,327,989.90 | 35,933,511.61 | 36,496,772.38 | 36,960,921.09 | 36,141,373.71 | 36,401,705.55 | |
TS10 | 139,474.89 | 131,426.68 | 133,060.53 | 136,709.88 | 130,933.41 | 133,282.01 | |
Random Block Size (p) | 8 | 9 | 10 | 11 | 12 | ||
Additive model | TS1 | 84.07 | 89.00 | 91.15 | 95.22 | 96.03 | |
TS2 | 57.55 | 61.42 | 63.41 | 66.89 | 68.90 | ||
TS3 | 210.84 | 226.57 | 239.70 | 257.01 | 264.37 | ||
TS4 | 10,299.38 | 10,560.51 | 11,337.73 | 11,414.14 | 11,806.72 | ||
TS5 | 7112.32 | 7567.51 | 7962.16 | 8357.21 | 8734.35 | ||
TS6 | 58,970.77 | 61,608.10 | 63,536.05 | 65,544.70 | 64,589.85 | ||
TS7 | 661.25 | 671.07 | 673.17 | 684.57 | 690.56 | ||
TS8 | 959.27 | 1006.81 | 1040.90 | 1066.40 | 1100.52 | ||
TS9 | 35,851,234.18 | 35,154,500.25 | 34,607,147.55 | 33,128,653.66 | 33,189,337.85 | ||
TS10 | 132,962.63 | 134,858.92 | 129,679.30 | 124,526.75 | 119,164.98 |
Random Block Size (p) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Multiplicative model | TS1 | 4.95 | 4.58 | 4.57 | 4.77 | 5.28 | 5.79 | 6.29 | 6.43 | 6.71 | 6.64 | 6.64 |
TS2 | 11.42 | 10.62 | 10.01 | 9.26 | 8.87 | 8.85 | 8.60 | 8.63 | 8.32 | 8.76 | 8.09 | |
TS3 | 5.28 | 4.85 | 4.59 | 4.85 | 4.82 | 5.01 | 5.13 | 5.19 | 5.09 | 5.33 | 5.25 | |
TS4 | 5.53 | 5.27 | 5.03 | 4.90 | 5.12 | 5.24 | 5.45 | 5.63 | 5.83 | 5.76 | 5.64 | |
TS5 | 6.09 | 6.26 | 6.68 | 7.17 | 7.35 | 7.42 | 7.51 | 7.51 | 7.27 | 7.39 | 7.41 | |
TS6 | 8.00 | 7.79 | 7.12 | 7.60 | 7.24 | 7.48 | 7.50 | 7.14 | 7.23 | 7.22 | 7.50 | |
TS7 | 12.42 | 12.03 | 11.24 | 10.93 | 10.37 | 10.53 | 10.69 | 10.47 | 10.80 | 10.97 | 11.15 | |
TS8 | 6.99 | 6.01 | 6.73 | 7.14 | 7.32 | 7.45 | 7.86 | 8.06 | 8.27 | 8.11 | 8.40 | |
TS9 | 16.59 | 15.26 | 15.20 | 15.22 | 15.36 | 15.16 | 15.09 | 14.68 | 14.86 | 14.27 | 13.54 | |
TS10 | 5.59 | 5.29 | 5.01 | 5.14 | 4.95 | 4.91 | 15.97 | 4.76 | 4.75 | 4.49 | 4.69 | |
Additive Model | TS1 | 3.58 | 3.20 | 3.64 | 4.15 | 4.64 | 5.15 | 5.50 | 5.84 | 6.05 | 6.18 | 6.31 |
TS2 | 6.54 | 4.32 | 4.54 | 4.89 | 5.68 | 6.25 | 7.34 | 7.69 | 8.11 | 8.59 | 6.79 | |
TS3 | 3.24 | 2.40 | 2.57 | 2.73 | 3.08 | 3.20 | 3.54 | 3.84 | 4.01 | 4.33 | 4.57 | |
TS4 | 4.62 | 4.75 | 4.53 | 4.79 | 4.64 | 4.94 | 5.29 | 5.29 | 5.78 | 5.89 | 6.00 | |
TS5 | 3.81 | 3.35 | 3.70 | 4.36 | 5.01 | 5.57 | 6.14 | 6.61 | 6.83 | 7.44 | 7.79 | |
TS6 | 5.40 | 5.41 | 5.86 | 6.34 | 6.57 | 6.97 | 7.04 | 7.32 | 7.87 | 8.04 | 8.00 | |
TS7 | 10.92 | 11.06 | 11.54 | 11.72 | 11.88 | 11.91 | 11.46 | 11.63 | 11.82 | 12.20 | 12.41 | |
TS8 | 6.85 | 5.93 | 6.53 | 6.94 | 7.66 | 8.07 | 8.57 | 8.95 | 9.30 | 9.43 | 9.79 | |
TS9 | 17.03 | 15.85 | 15.53 | 15.64 | 15.75 | 15.88 | 15.38 | 15.26 | 15.18 | 14.01 | 14.47 | |
TS10 | 5.28 | 4.93 | 4.96 | 5.03 | 4.98 | 5.21 | 5.19 | 5.25 | 5.03 | 5.02 | 4.59 |
Parameter | Coef. | SE. Coef. | t | p-Value |
---|---|---|---|---|
0.7678 | 0.0559 | 13.74 | 0.000 | |
Box–Lung test for | ||||
Lag | 12 | 24 | 36 | 48 |
Chi-square | 4.59 | 18.52 | 24.71 | 36.57 |
df | 11 | 23 | 35 | 47 |
p-value | 0.949 | 0.728 | 0.902 | 0.864 |
Dataset | Model | RMSE | AIC | BIC |
---|---|---|---|---|
TS1 | 80.03 | 23.53 | 33.96 | |
80.29 | 19.54 | 23.02 | ||
TS2 | 58.31 | 24.26 | 37.01 | |
58.81 | 22.30 | 31.86 | ||
57.52 | 24.21 | 36.96 | ||
TS3 | 224.51 | 25.66 | 32.61 | |
231.23 | 23.77 | 27.25 | ||
TS4 | 11,541.01 | 43.41 | 52.98 | |
11,597.03 | 43.43 | 53.00 | ||
11,909.69 | 41.54 | 47.94 | ||
11,994.04 | 41.56 | 47.94 | ||
11,270.79 | 41.32 | 47.69 | ||
TS5 | 5869.83 | 44.71 | 62.09 | |
5960.71 | 42.77 | 56.68 | ||
TS6 | 51,735.71 | 55.42 | 76.27 | |
51,568.92 | 59.41 | 87.21 | ||
53,529.02 | 51.55 | 65.46 | ||
TS7 | 721.26 | 32.32 | 40.95 | |
686.29 | 36.13 | 50.50 | ||
TS8 | 1019.44 | 33.71 | 42.33 | |
1095.41 | 36.00 | 47.50 | ||
1098.54 | 34.01 | 42.63 | ||
TS9 | 36,163,112.15 | 75.61 | 83.28 | |
38,989,458.07 | 73.92 | 79.02 | ||
38,263,130.36 | 73.84 | 78.68 | ||
TS10 | 152,003.91 | 53.73 | 60.98 | |
129,379.68 | 53.08 | 60.34 | ||
131,546.23 | 51.15 | 55.99 | ||
129,202.50 | 51.08 | 55.91 |
Forecasting Model | RMSE | MAPE | |
---|---|---|---|
TS1 | Multiplicative Holt–Winters pattern 7 | 75.31 | 4.46% |
Additive Bagging Holt–Winters p = 3 | 51.01 | 3.20% | |
80.29 | 4.80% | ||
TS2 | Multiplicative Holt–Winters pattern 7 | 53.40 | 5.80% |
Additive Bagging Holt–Winters p = 3 | 36.30 | 4.72% | |
58.81 | 6.10% | ||
TS3 | Additive Holt–Winters pattern 7 | 235.68 | 3.84% |
Additive Bagging Holt–Winters p = 3 | 130.74 | 2.40% | |
231.23 | 3.75% | ||
TS4 | Multiplicative Holt–Winters pattern 7 | 10,120.57 | 4.84% |
Additive Bagging Holt–Winters p = 4 | 9031.66 | 4.53% | |
11,270.79 | 5.47% | ||
TS5 | Multiplicative Holt–Winters pattern 7 | 5468.08 | 4.61% |
Additive Bagging Holt–Winters p = 3 | 4241.29 | 3.35% | |
5960.71 | 5.04% | ||
TS6 | Multiplicative Holt–Winters pattern 7 | 50,850.33 | 5.67% |
Additive Bagging Holt–Winters p = 2 | 42,796.01 | 5.40% | |
53,529.02 | 6.22% | ||
TS7 | Multiplicative Holt–Winters pattern 7 | 724.90 | 14.24% |
Multiplicative Bagging Holt–Winters p = 6 | 635.04 | 10.47% | |
721.26 | 14.23% | ||
TS8 | Multiplicative Holt–Winters pattern 7 | 1042.99 | 9.21% |
Additive Bagging Holt–Winters p = 3 | 697.19 | 5.94% | |
1019.44 | 8.93% | ||
TS9 | Additive Holt–Winters pattern 7 | 37,830,302.92 | 17.15% |
Multiplicative Bagging Holt–Winters p = 12 | 32,363,639.86 | 13.54% | |
38,263,130.36 | 18.16% | ||
TS10 | Multiplicative Holt–Winters pattern 7 | 121,625.17 | 4.59% |
Multiplicative Bagging Holt–Winters p = 11 | 118,661.36 | 4.69% | |
129,202.50 | 5.39% |
Dataset | Optimal Forecasting Model | MAPE |
---|---|---|
TS1 | Additive Bagging Holt–Winters p = 3 | 6.06% |
TS2 | Additive Bagging Holt–Winters p = 3 | 11.81% |
TS3 | Additive Bagging Holt–Winters p = 3 | 3.73% |
TS4 | Additive Bagging Holt–Winters p = 4 | 11.66% |
TS5 | Additive Bagging Holt–Winters p = 3 | 10.47% |
TS6 | Additive Bagging Holt–Winters p = 2 | 4.32% |
TS7 | Multiplicative Bagging Holt–Winters p = 6 | 12.13% |
TS8 | Additive Bagging Holt–Winters p = 3 | 7.70% |
TS9 | Multiplicative Bagging Holt–Winters p = 12 | 11.14% |
TS10 | Multiplicative Bagging Holt–Winters p = 11 | 5.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banditvilai, S.; Araveeporn, A. Empirical Comparison of Forecasting Methods for Air Travel and Export Data in Thailand. Modelling 2024, 5, 1395-1412. https://doi.org/10.3390/modelling5040072
Banditvilai S, Araveeporn A. Empirical Comparison of Forecasting Methods for Air Travel and Export Data in Thailand. Modelling. 2024; 5(4):1395-1412. https://doi.org/10.3390/modelling5040072
Chicago/Turabian StyleBanditvilai, Somsri, and Autcha Araveeporn. 2024. "Empirical Comparison of Forecasting Methods for Air Travel and Export Data in Thailand" Modelling 5, no. 4: 1395-1412. https://doi.org/10.3390/modelling5040072
APA StyleBanditvilai, S., & Araveeporn, A. (2024). Empirical Comparison of Forecasting Methods for Air Travel and Export Data in Thailand. Modelling, 5(4), 1395-1412. https://doi.org/10.3390/modelling5040072