AI and Machine Learning in Transplantation
Abstract
1. Introduction
1.1. Clinical Challenges in Transplantation
1.2. Technological Potential of AI and ML
1.3. Review Scope and Novel Contribution
2. AI and ML in Immunological Assessment
2.1. Pre-Transplant Compatibility
2.2. Risk Stratification
2.3. Tolerance Modelling
3. AI in Designing Clinical Pathways
3.1. Decision-Support Systems
3.2. Predictive Modelling for Outcomes
3.3. Optimisation of Follow-Up Schedules
4. AI in Detection and Treatment of Graft Dysfunction
4.1. AI-Based Diagnostic Tools for Early Graft Rejection
4.2. Remote and Continuous Monitoring Through Digital Health Technologies
4.3. Personalising Immunosuppression Through AI-Driven Therapies
5. Precise and Tailored Interventions
5.1. AI-Driven Optimisation of Immunosuppressive Therapy
5.2. AI-Augmented Surgical Precision and Robotics
5.3. Personalised Rehabilitation Strategies Using AI
5.4. Policy and Governance Frameworks for AI-Driven Transplantation
6. AI in Hypothermic and Normothermic Machine Perfusion
6.1. Predictive Modelling for Organ Viability
6.2. Real-Time Organ Monitoring and Perfusion Optimisation
6.3. AI-Guided Decision-Making in Organ Acceptance
7. Challenges, Limitations and Ethical Considerations
7.1. Data Privacy and Algorithmic Bias
7.2. Barriers to Clinical Integration and Regulatory Adoption
7.3. Transparency, Interpretability, and the Need for Explainable AI
8. Future Perspectives and Research Directions
8.1. Enhancing Real-Time Monitoring in Transplant Care
8.2. Integrating Multi-Omics Data for Precision Transplant Medicine
8.3. AI and Machine Perfusion: Towards Intelligent Organ Preservation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Gene Abbreviations and Their Roles
- IL2RB—Interleukin-2 Receptor Beta Subunit
- ○
- Function: Part of the IL-2 receptor complex, primarily expressed on T cells and NK cells.
- ○
- Role in rejection: Involved in T-cell proliferation and activation, which are central to immune-mediated graft rejection. Overexpression can indicate heightened immune activity.
- IL15—Interleukin-15
- ○
- Function: A cytokine that promotes the activation and survival of T cells and natural killer (NK) cells.
- ○
- Role in rejection: Elevated levels support memory T-cell responses, which contribute to chronic and acute transplant rejection.
- TNFSF13B—Tumor Necrosis Factor Superfamily Member 13B, also known as BAFF (B-cell activating factor)
- ○
- Function: Critical regulator of B cell development, survival, and antibody production.
- ○
- Role in rejection: Overexpression is associated with antibody-mediated rejection (AMR), as it enhances B-cell responses and donor-specific antibody formation.
- C1QA—Complement C1q Subcomponent Subunit A
- ○
- Function: A key component of the classical complement pathway involved in immune complex clearance.
- ○
- Role in rejection: Upregulation can signal complement activation, a hallmark of humoral (antibody-mediated) rejection. C1QA is often elevated in tissue undergoing inflammatory injury.
- HLA—Human Leukocyte Antigen
- ○
- Function: Cell surface proteins that present antigens to the immune system.
- ○
- Role in transplantation:
- Major determinant of graft compatibility.
- Mismatched HLAs can lead to T-cell and antibody-mediated rejection.
- HLA typing is routinely used to match donors and recipients.
- PROMAD Atlas—Predictive Rejection Omics Marker Atlas for Diagnostics
- ○
- Function: A curated multi-omics resource compiling biomarkers (genes/proteins) related to transplant rejection and tolerance.
- ○
- Role:
- Supports the discovery and validation of predictive molecular markers.
- Integrates data from RNA-seq, proteomics, and epigenetics to help build machine learning models for transplant diagnostics.
- p21^Cip1—Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A)
- p16^INK4a—Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A)
- ○
- Function: Both are cell cycle inhibitors and markers of cellular senescence.
- ○
- Role in transplantation:
- Associated with ageing and immune cell exhaustion.
- Increased expression may indicate senescence-associated immune dysfunction, relevant in chronic allograft dysfunction or prolonged immune activation.
- May serve as biomarkers of graft ageing or damage.
- Predictive SRGs—Predictive Senescence-Related Genes
- ○
- Function: Genes linked to cellular senescence, identified for their predictive power in disease progression.
- ○
- Role in transplantation:
- Used in machine learning models to predict graft rejection or chronic dysfunction.
- Include genes like p16^INK4a, p21^Cip1, and others associated with immune exhaustion, fibrosis, and tissue ageing.
- TruGraf
- ○
- Function: A blood-based gene expression test used to assess transplant graft status.
- ○
- Role:
- Detects gene signatures associated with immune quiescence.
- Helps identify subclinical rejection or confirm the absence of rejection.
- Non-invasive alternative to biopsy, used primarily in kidney transplant monitoring.
- kSORT—Kidney Solid Organ Response Test
- ○
- Function: A blood-based gene panel test for early detection of acute rejection in kidney transplants.
- ○
- Role:
- Measures the expression of 17 immune-related genes.
- Identifies T-cell-mediated rejection (TCMR) before clinical symptoms or creatinine rise.
- Offers preemptive diagnostic power to adjust immunosuppression.
References
- Robertson, H.; Kim, H.J.; Li, J.; Robertson, N.; Robertson, P.; Jimenez-Vera, E.; Ameen, F.; Tran, A.; Trinh, K.; O’Connell, P.J.; et al. Decoding the hallmarks of allograft dysfunction with a comprehensive pan-organ transcriptomic atlas. Nat. Med. 2024, 30, 3748–3757. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Shroff, A.; Fülöp, T.; Molnar, M.Z.; Sharif, A.; Burke, B.; Shroff, S.; Briggs, D.; Krishnan, N. Artificial intelligence assisted risk prediction in organ transplantation: A UK Live-Donor Kidney Transplant Outcome Prediction tool. Ren. Fail. 2025, 47, 2431147. [Google Scholar] [CrossRef]
- Alowidi, N.; Ali, R.; Sadaqah, M.; Naemi, F.M.A. Advancing Kidney Transplantation: A Machine Learning Approach to Enhance Donor–Recipient Matching. Diagnostics 2024, 14, 2119. [Google Scholar] [CrossRef]
- Deshpande, R. Smart match: Revolutionizing organ allocation through artificial intelligence. Front. Artif. Intell. 2024, 7, 1364149. [Google Scholar] [CrossRef]
- Rothwell, A.; Nita, G.; Howse, M.; Ridgway, D.; Hammad, A.; Mehra, S.; Jones, A.R.; Goldsmith, P. Using Machine Learning to Examine Pre-Transplant Factors Influencing De novo HLA-Specific Antibody Development Post-Kidney Transplant. medRxiv 2024, 24315920. Available online: https://www.medrxiv.org/content/10.1101/2024.10.28.24315920v1 (accessed on 19 April 2025).
- Shen, X.; Wu, J.; Zhang, F.; Bi, Q.; Sun, Z.; Wang, W. Deciphering the impact of senescence in kidney transplant rejection: An integrative machine learning and multi-omics analysis via bulk and single-cell RNA sequencing. PLoS ONE 2024, 19, e0312272. [Google Scholar] [CrossRef]
- Zarringhalam, K.; Enayetallah, A.; Reddy, P.; Ziemek, D. Robust clinical outcome prediction based on Bayesian analysis of transcriptional profiles and prior causal networks. Bioinformatics 2014, 30, i69–i77. [Google Scholar] [CrossRef]
- Weimer, E.T.; Newhall, K.A. Machine learning enhanced immunologic risk assessments for solid organ transplantation. Sci. Rep. 2025, 15, 7943. [Google Scholar] [CrossRef]
- Quaglia, M.; Merlotti, G.; Guglielmetti, G.; Castellano, G.; Cantaluppi, V. Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int. J. Mol. Sci. 2020, 21, 5404. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Ding, H.; Wang, Y.; Shi, Z.; Zhang, H.; Meng, F.; Chang, Q.; Duan, H.; Lu, K.; Zhang, L.; et al. Key genes and immune pathways in T-cell mediated rejection post-liver transplantation identified via integrated RNA-seq and machine learning. Sci. Rep. 2024, 14, 24315. [Google Scholar] [CrossRef] [PubMed]
- Taner, T.; Bruner, J.; Emamaullee, J.; Bonaccorsi-Riani, E.; Zarrinpar, A. New Approaches to the Diagnosis of Rejection and Prediction of Tolerance in Liver Transplantation. Transplantation 2022, 106, 1952–1962. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Agarwal, D.; Deng, K.; Matheson, R.; Yang, H.; Wei, L.; Ran, Q.; Deng, S.; Markmann, J.F. An Unbiased Machine Learning Exploration Reveals Gene Sets Predictive of Allograft Tolerance After Kidney Transplantation. Front. Immunol. 2021, 12, 695806. [Google Scholar] [CrossRef]
- Peloso, A.; Moeckli, B.; Delaune, V.; Oldani, G.; Andres, A.; Compagnon, P. Artificial Intelligence: Present and Future Potential for Solid Organ Transplantation. Transpl. Int. 2022, 35, 10640. [Google Scholar] [CrossRef]
- Molinari, M.; Ayloo, S.; Tsung, A.; Jorgensen, D.; Tevar, A.; Rahman, S.H.; Jonassaint, N. Prediction of Perioperative Mortality of Cadaveric Liver Transplant Recipients During Their Evaluations. Transplantation 2019, 103, e297–e307. [Google Scholar] [CrossRef]
- Strauss, A.T.; Sidoti, C.N.; Sung, H.C.; Jain, V.S.; Lehmann, H.; Purnell, T.S.; Jackson, J.W.; Malinksy, D.; Hamilton, J.P.; Garonzik-Wang, J.; et al. Artificial intelligence-based clinical decision support for liver transplant evaluation and considerations about fairness: A qualitative study. Hepatol. Commun. 2023, 7, e0239. [Google Scholar] [CrossRef]
- He, Y.J.; Liu, P.L.; Wei, T.; Liu, T.; Li, Y.F.; Yang, J.; Fan, W.X. Artificial intelligence in kidney transplantation: A 30-year bibliometric analysis of research trends, innovations, and future directions. Ren. Fail. 2025, 47, 2458754. [Google Scholar] [CrossRef] [PubMed]
- Assis de Souza, A.; Stubbs, A.P.; Hesselink, D.A.; Baan, C.C.; Boer, K. Cherry on Top or Real Need? A Review of Explainable Machine Learning in Kidney Transplantation. Transplantation 2025, 109, 123–132. [Google Scholar] [CrossRef]
- Salaün, A.; Knight, S.; Wingfield, L.; Zhu, T. Predicting graft and patient outcomes following kidney transplantation using interpretable machine learning models. Sci. Rep. 2024, 14, 17356. [Google Scholar] [CrossRef]
- Avramidou, E.; Todorov, D.; Katsanos, G.; Antoniadis, N.; Kofinas, A.; Vasileiadou, S.; Karakasi, K.; Tsoulfas, G. AI Innovations in Liver Transplantation: From Big Data to Better Outcomes. Livers 2025, 5, 14. [Google Scholar] [CrossRef]
- Salybekov, A.A.; Yerkos, A.; Sedlmayr, M.; Wolfien, M. Ethics and Algorithms to Navigate AI’s Emerging Role in Organ Transplantation. J. Clin. Med. 2025, 14, 2775. [Google Scholar] [CrossRef] [PubMed]
- Furness, P.N.; Levesley, J.; Luo, Z.; Taub, N.; Kazi, J.I.; Bates, W.D.; Nicholson, M.L. A neural network approach to the biopsy diagnosis of early acute renal transplant rejection. Histopathology 1999, 35, 461–467. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef]
- Seraphin, T.P.; Luedde, M.; Roderburg, C.; van Treeck, M.; Scheider, P.; Buelow, R.D.; Boor, P.; Loosen, S.H.; Provaznik, Z.; Mendelsohn, D.; et al. Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning. Eur. Heart J.-Digit. Health 2023, 4, 265–274. [Google Scholar] [CrossRef]
- Anglicheau, D.; Sharma, V.K.; Ding, R.; Hummel, A.; Snopkowski, C.; Dadhania, D.; Seshan, S.V.; Suthanthiran, M. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl. Acad. Sci. USA 2009, 106, 5330–5335. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Y.; Zhuang, H.; Lin, E.; Xie, L.; Feng, X.; Zeng, J.; Liu, Y.; Liu, J.; Yu, Y. Identifying 4 Novel lncRNAs as Potential Biomarkers for Acute Rejection and Graft Loss of Renal Allograft. J. Immunol. Res. 2020, 2020, 2415374. [Google Scholar] [CrossRef] [PubMed]
- Sharaby, I. AI-driven Approach for Diagnosis of Renal Transplant Rejection Based on Biomarkers Identification and Integration. Master’s Thesis, University of Louiseville, Louisville, KY, USA, 2024. Available online: https://ir.library.louisville.edu/etd/4486 (accessed on 1 May 2025).
- Zhu, D.; Liu, Z.; Pan, Z.; Qian, M.; Wang, L.; Zhu, T.; Xue, Y.; Wu, D. A new method for classifying different phenotypes of kidney transplantation. Cell Biol. Toxicol. 2016, 32, 323–332. [Google Scholar] [CrossRef]
- Park, M.Y.; Krishna Vasamsetti, B.M.; Kim, W.S.; Kang, H.J.; Kim, D.Y.; Lim, B.; Cho, K.; Kim, J.K.; Chee, H.K.; Park, J.H.; et al. Comprehensive Analysis of Cardiac Xeno-Graft Unveils Rejection Mechanisms. Int. J. Mol. Sci. 2021, 22, 751. [Google Scholar] [CrossRef] [PubMed]
- Belčič Mikič, T.; Arnol, M. The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and Applications. Diagnostics 2024, 14, 2482. [Google Scholar] [CrossRef] [PubMed]
- Mizera, J.; Pondel, M.; Kepinska, M.; Jerzak, P.; Banasik, M. Advancements in Artificial Intelligence for Kidney Transplantology: A Comprehensive Review of Current Applications and Predictive Models. J. Clin. Med. 2025, 14, 975. [Google Scholar] [CrossRef]
- Zhi, R.; Zhang, X.D.; Hou, Y.; Jiang, K.W.; Li, Q.; Zhang, J.; Zhang, Y. RtNet: A deep hybrid neural network for the identification of acute rejection and chronic allograft nephropathy after renal transplantation using multiparametric MRI. Nephrol. Dial. Transplant. 2022, 37, 2581–2590. [Google Scholar] [CrossRef]
- Buscher, K.; Heitplatz, B.; van Marck, V.; Song, J.; Loismann, S.; Rixen, R.; Hüchtmann, B.; Kurian, S.; Ehinger, E.; Wolf, D.; et al. Data-Driven Kidney Transplant Phenotyping as a Histology-Independent Framework for Biomarker Discovery. J. Am. Soc. Nephrol. JASN 2021, 32, 1933–1945. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.M.; Lee, K.; Cho, H.; Shin, S.; Kim, J.K. Diagnosis and classification of kidney transplant rejection using machine learning-assisted surface-enhanced Raman spectroscopy using a single drop of serum. Biosens. Bioelectron. 2024, 261, 116523. [Google Scholar] [CrossRef]
- Madhvapathy, S.R.; Wang, J.J.; Wang, H.; Patel, M.; Chang, A.; Zheng, X.; Huang, Y.; Zhang, Z.J.; Gallon, L.; Rogers, J.A. Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 2023, 381, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Keating, B.J.; Mukhtar, E.H.; Elftmann, E.D.; Eweje, F.R.; Gao, H.; Ibrahim, L.I.; Kathawate, R.G.; Lee, A.C.; Li, E.H.; Moore, K.A.; et al. Early detection of SARS-CoV-2 and other infections in solid organ transplant recipients and household members using wearable devices. Transpl. Int. 2021, 34, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Kuang, M.; Yao, Z.; Chen, J.; Yan, Y.; Li, Z. The effectiveness of remote interventions based on digital health technology in kidney transplant recipients: A systematic review. World J. Urol. 2025, 43, 193. [Google Scholar] [CrossRef] [PubMed]
- Falevai, I.; Hassandoust, F. Enhancing Transplantation Care with eHealth: Benefits, Challenges, and Key Considerations for the Future. Future Int. 2025, 17, 177. [Google Scholar] [CrossRef]
- Murray, K.R.; Foroutan, F.; Amadio, J.M.; Posada, J.D.; Kozuszko, S.; Duhamel, J.; Tsang, K.; Farkouh, M.E.; McDonald, M.; Billia, F.; et al. Remote Mobile Outpatient Monitoring in Transplant (Reboot) 2.0: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2021, 10, e26816. [Google Scholar] [CrossRef]
- Pérez-Sanz, F.; Revilla-Nuin, B.; Martínez-Alarcón, L.; Herrero, J.I.; Ramírez, P.; Pons, J.A.; Baroja-Mazo, A. Tolerance Biomarkers in Liver Transplantation: Independent External Validation of the Predictive Strength of SENP6 and FEM1C Gene Expression. Transplantation 2019, 103, 1887–1892. [Google Scholar] [CrossRef]
- Pei, J.; Weng, H.; Peng, J.; Wu, M.; Zhan, X.; Zhu, G.; Wang, D.; Pan, X.; An, N. Identification of potential targets regulating neutrophil extracellular traps in acute rejection of kidney transplantation based on transcriptomics and animal experiments. Int. Immunopharmacol. 2025, 147, 114008. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, J.; Yu, C.; Luo, J.; Hua, Y.; Wei, G. APOD: A biomarker associated with oxidative stress in acute rejection of kidney transplants based on multiple machine learning algorithms and animal experimental validation. Transpl. Immunol. 2024, 86, 102101. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, X. Bioinformatics analysis characterizes immune infiltration landscape and identifies potential blood biomarkers for heart transplantation. Transpl. Immunol. 2024, 84, 102036. [Google Scholar] [CrossRef]
- Basuli, D.; Roy, S. Beyond Human Limits: Harnessing Artificial Intelligence to Optimize Immunosuppression in Kidney Transplantation. J. Clin. Med. Res. 2023, 15, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Al Moussawy, M.; Lakkis, Z.S.; Ansari, Z.A.; Cherukuri, A.R.; Abou-Daya, K.I. The transformative potential of artificial intelligence in solid organ transplantation. Front. Transpl. 2024, 3, 1–17. Available online: https://www.frontiersin.org/journals/transplantation/articles/10.3389/frtra.2024.1361491/full (accessed on 19 April 2025). [CrossRef]
- Gotlieb, N.; Azhie, A.; Sharma, D.; Spann, A.; Suo, N.J.; Tran, J.; Orchanian-Cheff, A.; Wang, B.; Goldenberg, A.; Chassé, M.; et al. The promise of machine learning applications in solid organ transplantation. npj Digit. Med. 2022, 5, 89. [Google Scholar] [CrossRef]
- Olawade, D.B.; Marinze, S.; Qureshi, N.; Weerasinghe, K.; Teke, J. The impact of artificial intelligence and machine learning in organ retrieval and transplantation: A comprehensive review. Curr. Res. Transl. Med. 2025, 73, 103493. [Google Scholar] [CrossRef]
- Ramalhete, L.; Almeida, P.; Ferreira, R.; Abade, O.; Teixeira, C.; Araújo, R. Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts. BioMedInformatics 2024, 4, 673–689. [Google Scholar] [CrossRef]
- Tang, J.; Liu, R.; Zhang, Y.L.; Liu, M.Z.; Hu, Y.F.; Shao, M.J.; Zhu, L.; Xin, H.; Feng, G.; Shang, W.; et al. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients. Sci. Rep. 2017, 7, 42192. [Google Scholar] [CrossRef]
- Moscatelli, M.; Manconi, A.; Pessina, M.; Fellegara, G.; Rampoldi, S.; Milanesi, L.; Casasco, A.; Gnocchi, M. An infrastructure for precision medicine through analysis of big data. BMC Bioinform. 2018, 19 (Suppl. S10), 351. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, E.; Jagadeesan, M.; Paul, R.; Bromberg, J.; Dadgar, S. Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope? Transplant. Direct. 2021, 7, e650. [Google Scholar] [CrossRef]
- Naesens, M.; Anglicheau, D. Precision Transplant Medicine: Biomarkers to the Rescue. J. Am. Soc. Nephrol. JASN 2018, 29, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Jiang, Y.; Sun, Y.; Liao, R.; Liu, Y.; Yan, Z.; He, A.; Zhou, M.; Yang, J.; Wu, Y.; et al. Knowledge domain and frontier trends of artificial intelligence applied in solid organ transplantation: A visualization analysis. Int. J. Med. Inf. 2025, 195, 105782. [Google Scholar] [CrossRef]
- Johnston-Webber, C.; Mah, J.; Prionas, A.; Streit, S.; Wharton, G.; Forsythe, J.; Mossialos, E.; Papalois, V. Solid Organ Donation and Transplantation in the United Kingdom: Good Governance is Key to Success. Transpl. Int. 2023, 36, 11012. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, B.; Sapir-Pichhadze, R.; de Chickera, S.N.; Caulfield, T. Communicating About Precision Transplantation Tools. Can. J. Kidney Health Dis. 2024, 11, 20543581241228737. [Google Scholar] [CrossRef]
- Shung, D.L.; Sung, J.J.Y. Challenges of developing artificial intelligence-assisted tools for clinical medicine. J. Gastroenterol. Hepatol. 2021, 36, 295–298. [Google Scholar] [CrossRef]
- Serper, M.; Barankay, I.; Chadha, S.; Shults, J.; Jones, L.S.; Olthoff, K.M.; Reese, P.R. A Randomized, Controlled, Behavioral Intervention to Promote Walking after Abdominal Organ Transplantation: Results from the LIFT Study. Transpl. Int. Off. J. Eur. Soc. Organ. Transpl. 2020, 33, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Chadban, S.J.; Ahn, C.; Axelrod, D.A.; Foster, B.J.; Kasiske, B.L.; Kher, V.; Kumali, D.; Oberbauer, R.; Pascual, J.; Pilmore, H.L.; et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020, 104, S11. [Google Scholar] [CrossRef]
- GOV UK. Honouring the Gift of Donation: Utilising Organs for Transplant—Summary Report of the Organ Utilisation Group. Available online: https://www.gov.uk/government/publications/honouring-the-gift-of-donation-utilising-organs-for-transplant/honouring-the-gift-of-donation-utilising-organs-for-transplant-summary-report-of-the-organ-utilisation-group (accessed on 1 May 2025).
- Naesens, M. Embracing the Wisdom of Ancient Greece in the Era of Personalized Medicine—Uncertainty, Probabilistic Reasoning, and Democratic Consensus. Transpl. Int. 2023, 36, 12178. [Google Scholar] [CrossRef]
- Asong-Fontem, N.; Panisello-Rosello, A.; Beghdadi, N.; Lopez, A.; Rosello-Catafau, J.; Adam, R. Pre-Ischemic Hypothermic Oxygenated Perfusion Alleviates Protective Molecular Markers of Ischemia-Reperfusion Injury in Rat Liver. Transplant. Proc. 2022, 54, 1954–1969. [Google Scholar] [CrossRef]
- Martins, P.N.; Buchwald, J.E.; Mergental, H.; Vargas, L.; Quintini, C. The role of normothermic machine perfusion in liver transplantation. Int. J. Surg. Lond. Engl. 2020, 82, 52–60. [Google Scholar] [CrossRef]
- Foguenne, M.; MacMillan, S.; Kron, P.; Nath, J.; Devresse, A.; De Meyer, M.; Michel, M.; Hosgood, S. Darius Current Evidence and Future Perspectives to Implement Continuous and End-Ischemic Use of Normothermic and Oxygenated Hypothermic Machine Perfusion in Clinical Practice. J. Clin. Med. 2023, 12, 3207. [Google Scholar] [CrossRef] [PubMed]
- Tatum, R.; O’Malley, T.J.; Bodzin, A.S.; Tchantchaleishvili, V. Machine perfusion of donor organs for transplantation. Artif. Organs 2021, 45, 682–695. [Google Scholar] [CrossRef]
- Yang, N.; Shi, Q.; Wei, M.; Xiao, Y.; Xia, M.; Cai, X.; Zhang, X.; Wang, W.; Pan, X.; Mao, H.; et al. Deep-Learning Terahertz Single-Cell Metabolic Viability Study. ACS Nano. 2023, 17, 21383–21393. [Google Scholar] [CrossRef]
- Magbagbeola, M.; Rai, Z.L.; Doyle, K.; Lindenroth, L.; Dwyer, G.; Gander, A.; Stilli, A.; Davidson, B.R.; Stoyanov, D. An adaptable research platform for ex vivo normothermic machine perfusion of the liver. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 1101–1108. [Google Scholar] [CrossRef]
- Navarro, A.P.; Sohrabi, S.; Colechin, E.; Griffiths, C.; Talbot, D.; Soomro, N.A. Evaluation of the ischemic protection efficacy of a laparoscopic renal cooling device using renal transplantation viability assessment criteria in a porcine model. J. Urol. 2008, 179, 1184–1189. [Google Scholar] [CrossRef]
- Taylor, M.J.; Baicu, S.C. Current State of Hypothermic Machine Perfusion Preservation of Organs: The Clinical Perspective. Cryobiology 2010, 60, S20–S35. [Google Scholar] [CrossRef] [PubMed]
- Tusch, G. A model for optimal sequential decisions applied to liver transplantation. Stud. Health Technol. Inform. 2000, 77, 758–762. [Google Scholar] [PubMed]
- Parente, A.; Osei-Bordom, D.C.; Ronca, V.; Perera, M.T.P.R.; Mirza, D. Organ Restoration With Normothermic Machine Perfusion and Immune Reaction. Front. Immunol. 2020, 11, 565616. [Google Scholar] [CrossRef] [PubMed]
- Habart, D.; Koza, A.; Leontovyc, I.; Kosinova, L.; Berkova, Z.; Kriz, J.; Zacharovova, K.; Brinkhof, B.; Cornelissen, D.; Magrane, N.; et al. IsletSwipe, a mobile platform for expert opinion exchange on islet graft images. Islets 2023, 15, 2189873. [Google Scholar] [CrossRef]
- Wagner, M.J.; Hatami, S.; Freed, D.H. Thoracic organ machine perfusion: A review of concepts with a focus on reconditioning therapies. Front. Transplant. 2023, 2, 1060992. [Google Scholar] [CrossRef]
- Weissenbacher, A.; Vrakas, G.; Nasralla, D.; Ceresa, C.D.L. The future of organ perfusion and re-conditioning. Transplant. Int. 2019, 32, 586–597. [Google Scholar] [CrossRef]
- Bouhouita-Guermech, S.; Gogognon, P.; Bélisle-Pipon, J.C. Specific challenges posed by artificial intelligence in research ethics. Front. Artif. Intell. 2023, 6, 1149082. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH). Guiding Principles for Ethical Research. 2015. Available online: https://www.nih.gov/health-information/nih-clinical-research-trials-you/guiding-principles-ethical-research (accessed on 20 April 2025).
- Wu, Y.; Lin, C. Ethical implications of AI-driven bias assessment in medicine. BMJ Evid.-Based Med. 2024, 29, 282. [Google Scholar] [CrossRef]
- Dalton-Brown, S. The Ethics of Medical AI and the Physician-Patient Relationship. Camb. Q. Healthc. Ethics CQ Int. J. Healthc. Ethics Comm. 2020, 29, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Taquette, S.R.; Borges da Matta Souza, L.M. Ethical Dilemmas in Qualitative Research: A Critical Literature Review. Int. J. Qual. Methods 2022, 21, 16094069221078731. [Google Scholar] [CrossRef]
- Cornell, M.; Kaderka, R.; Hild, S.J.; Ray, X.J.; Murphy, J.D.; Atwood, T.F.; Moore, K.L. Noninferiority Study of Automated Knowledge-Based Planning Versus Human-Driven Optimization Across Multiple Disease Sites. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 430–439. [Google Scholar] [CrossRef]
- Bleeker, S.E.; Moll, H.A.; Steyerberg, E.W.; Donders, A.R.T.; Derksen-Lubsen, G.; Grobbee, D.E.; Moons, K.G.M. External validation is necessary in prediction research: A clinical example. J. Clin. Epidemiol. 2003, 56, 826–832. [Google Scholar] [CrossRef]
- The Importance of Ethical Considerations in Research and Clinical Trials|Penn LPS Online 2024. Available online: https://lpsonline.sas.upenn.edu/features/importance-ethical-considerations-research-and-clinical-trials (accessed on 20 April 2025).
- Sáez, C.; Ferri, P.; García-Gómez, J.M. Resilient Artificial Intelligence in Health: Synthesis and Research Agenda Toward Next-Generation Trustworthy Clinical Decision Support. J. Med. Internet Res. 2024, 26, e50295. [Google Scholar] [CrossRef] [PubMed]
- Januszewski, M.; Jain, V. Next-generation AI for connectomics. Nat. Methods 2024, 21, 1398–1399. [Google Scholar] [CrossRef]
Key Findings |
|
Recommendations |
|
Key Findings |
|
Recommendations |
|
Key Findings |
|
Recommendations |
|
Key Findings |
|
Recommendations |
|
Key Findings |
|
Recommendations |
|
Key Findings |
|
Recommendations |
|
Key Findings |
|
Recommendations |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivek, K.; Papalois, V. AI and Machine Learning in Transplantation. Transplantology 2025, 6, 23. https://doi.org/10.3390/transplantology6030023
Vivek K, Papalois V. AI and Machine Learning in Transplantation. Transplantology. 2025; 6(3):23. https://doi.org/10.3390/transplantology6030023
Chicago/Turabian StyleVivek, Kavyesh, and Vassilios Papalois. 2025. "AI and Machine Learning in Transplantation" Transplantology 6, no. 3: 23. https://doi.org/10.3390/transplantology6030023
APA StyleVivek, K., & Papalois, V. (2025). AI and Machine Learning in Transplantation. Transplantology, 6(3), 23. https://doi.org/10.3390/transplantology6030023