Animal Models in Allogenic Solid Organ Transplantation
Abstract
:1. Introduction
2. Small Animal Models
2.1. Kidney Transplantation
2.2. Liver Transplantation
2.3. Heart Transplantation
2.4. Lung Transplantation
2.5. Large Animal Models
2.6. Kidney Transplantation
2.7. Liver Transplantation
2.8. Heart Transplantation
2.9. Lung Transplantation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geise, W. Guidelines for the Use and Care of Small Laboratory Animals in Transplantantation Research. In OrganTransplantation in Rats and Mice: Microsurgical Techniques and Immunological Principles; Timmermann, W., Gassel, H.-J., Ulrichs, K., Zhong, R., Thiede, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 27–40. [Google Scholar]
- Minor, T.; Schemmer, P. Organprotektion und OrganTransplantation. Allgemein-und Viszeralchirurgie Up2date 2009, 3, 131–146. [Google Scholar] [CrossRef]
- Park, S.E.; Schaer, T.P. Preclinical Animal Models. Acad. Entrep. Med. Health Sci. 2019, 1, 20. [Google Scholar]
- Orlando, G.; Soker, S.; Stratta, R.J.; Atala, A. Will regenerative medicine replace Transplantation? Cold Spring Harb. Perspect. Med. 2013, 3, a015693. [Google Scholar] [CrossRef] [Green Version]
- Mahillo, B.; Carmona, M.; Alvarez, M.; Marco, J.; Nuñez, J.R.; López-Fraga, M.; Matesanz, R.; Domínguez-Gil, B. Worldwide distribution of solid organ Transplantation and access of population to those practices. Transplantantation 2018, 102, S71–S72. [Google Scholar] [CrossRef]
- Loupy, A.; Aubert, O.; Reese, P.P.; Bastien, O.; Bayer, F.; Jacquelinet, C. Organ procurement and Transplantation during the COVID-19 pandemic. Lancet 2020, 395, e95–e96. [Google Scholar] [CrossRef]
- Cavalcante, L.D.S.; Toner, M.; Uygun, K.; Tessier, S.N. Leveraging the zebrafish to model organ Transplantation. Curr. Opin. Organ Transplant. 2019, 24, 613–619. [Google Scholar] [CrossRef]
- Muschler, G.F.; Raut, V.P.; Patterson, T.E.; Wenke, J.C.; Hollinger, J.O. The Design and Use of Animal Models for Translational Research in Bone Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B Rev. 2010, 16, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Matar, A.J.; Crepeau, R.L.; Duran-Struuck, R. Cellular Immunotherapies in Pre-Clinical Large Animal Models of Transplantantation. Biol. Blood Marrow Transplant. 2020, 27, 36–44. [Google Scholar]
- Gunaratnam, L.; Jevnikar, A.M.; Mannon, R.B. Small Animal Models of Transplantantation. Textb. Organ Transplant. 2014, 158–184. [Google Scholar] [CrossRef]
- Baldwin, W.M., III; Su, C.A.; Shroka, T.M.; Fairchild, R.L. Experimental models of cardiac Transplantation: Design determines relevance. Curr. Opin. Organ Transplant. 2014, 19, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-Y.; Kim, J.-S.; Che, J.-H.; Ku, S.-Y.; Kang, B.-C.; Yun, J.-W. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021, 13, 130. [Google Scholar] [CrossRef]
- Hotham, W.; Henson, F. The use of large animals to facilitate the process of MSC going from laboratory to patient-‘bench to bedside’. Cell Biol. Toxicol. 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Zhang, Z.J. Therapeutic Strategies of Kidney Transplantant Ischemia Reperfusion Injury: Insight From Mouse Models. Biomed. J. Sci. Tech. Res. 2019, 14, 002617. [Google Scholar]
- Baldwin, W.M., III; Valujskikh, A.; Fairchild, R.L. Antibody-mediated rejection: Emergence of animal models to answer clinical questions. Am. J. Transplant. 2010, 10, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Jindra, P.T.; Hsueh, A.; Hong, L.; Gjertson, D.; Shen, X.-D.; Gao, F.; Dang, J.; Mischel, P.S.; Baldwin, W.M.; Fishbein, M.C.; et al. Anti-MHC Class I Antibody Activation of Proliferation and Survival Signaling in Murine Cardiac Allografts. J. Immunol. 2008, 180, 2214–2224. [Google Scholar] [CrossRef] [Green Version]
- Zinöcker, S.; Dressel, R.; Wang, X.-N.; Dickinson, A.M.; Rolstad, B. Immune Reconstitution and Graft-Versus-Host Reactions in Rat Models of Allogeneic Hematopoietic Cell Transplantantation. Front. Immunol. 2012, 3, 355. [Google Scholar] [CrossRef] [Green Version]
- Chong, A.S.; Alegre, M.-L.; Miller, M.L.; Fairchild, R.L. Lessons and Limits of Mouse Models. Cold Spring Harb. Perspect. Med. 2013, 3, a015495. [Google Scholar] [CrossRef]
- Garraud, O.; Borhis, G.; Badr, G.; Degrelle, S.; Pozzetto, B.; Cognasse, F.; Richard, Y. Revisiting the B-cell compartment in mouse and humans: More than one B-cell subset exists in the marginal zone and beyond. BMC Immunol. 2012, 13, 63. [Google Scholar] [CrossRef]
- McDaid, J.; Scott, C.J.; Kissenpfennig, A.; Chen, H.; Martins, P.N. The utility of animal models in developing immunosuppressive agents. Eur. J. Pharm. 2015, 759, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Costello, R.; Kissenpfennig, A.; Martins, P.N.; McDaid, J. Development of Transplant immunosuppressive agents—Considerations in the use of animal models. Expert Opin. Drug Discov. 2018, 13, 1041–1053. [Google Scholar] [CrossRef]
- Demirkan, A.; Melli, M. A simple and inexpensive device for collecting urine samples from rats. Lab Anim. 2007, 36, 39–41. [Google Scholar] [CrossRef]
- Hoffman, J.F.; Fan, A.X.; Neuendorf, E.H.; Vergara, V.B.; Kalinich, J.F. Hydrophobic Sand Versus Metabolic Cages: A Comparison of Urine Collection Methods for Rats (Rattus norvegicus). J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 51–57. [Google Scholar]
- Kurien, B.T.; Scofield, R.H. Mouse urine collection using clear plastic wrap. Lab. Anim. 1999, 33, 83–86. [Google Scholar] [CrossRef]
- Brown, S.; Hancock, J. The mouse genome. Vertebr. Genomes 2006, 2, 33–45. [Google Scholar]
- Chinwalla, A.T.; Cook, L.L.; Delehaunty, K.D.; Fewell, G.A.; Fulton, L.A.; Fulton, R.S. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar]
- Perlman, R.L. Mouse Models of Human Disease: An Evolutionary Perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Riehle, C.; Bauersachs, J. Small animal models of heart failure. Cardiovasc. Res. 2019, 115, 1838–1849. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Quadros, R.M.; Gurumurthy, C.B.; Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 2018, 13, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, D.K.; Li, Q.; Hoffman, R.A.; Williams, A.L.; Shlomchik, W.D.; Rothstein, D.M.; Demetris, A.J.; Lakkis, F.G. Allograft Outcomes in Outbred Mice. Arab. Archaeol. Epigr. 2013, 13, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosier, D.E. Immunodeficient mice xenografted with human lymphoid cells: New models forin vivo studies of human immunobiology and infectious diseases. J. Clin. Immunol. 1990, 10, 185–191. [Google Scholar] [CrossRef]
- Ajith, A.; Mulloy, L.L.; Musa, A.; Bravo-Egana, V.; Horuzsko, D.D.; Gani, I.; Horuzsko, A. Humanized Mouse Model as a Novel Approach in the Assessment of Human Allogeneic Responses in Organ Transplantantation. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Kenney, L.L.; Shultz, L.D.; Greiner, D.L.; Brehm, M. Humanized Mouse Models for Transplantant Immunology. Am. J. Transplant. 2016, 16, 389–397. [Google Scholar] [CrossRef]
- Martins, P.N. Technique of kidney Transplantation in mice with anti-reflux urinary reconstruction. Int. Braz. J. Urol. 2006, 32, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, G.H.; Hughes, J.; Marson, L.P. Systematic review of mouse kidney Transplantation. Transplant. Int. 2013, 26, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.N. Learning curve, surgical results and operative complications for kidney Transplantation in mice. Microsurgery 2006, 26, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Lewis, A.G.; Kunter, U.; Haller, H.; Gueler, F. A Knotless Technique for Kidney Transplantantation in the Mouse. J. Transplant. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wei, J.; Jiang, S.; Li, H.-H.; Fu, L.; Zhang, J.; Liu, R. Effects of different storage solutions on renal ischemia tolerance after kidney Transplantation in mice. Am. J. Physiol. Physiol. 2018, 314, F381–F387. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hu, Z.; Wang, L.; Lv, G.-Y. Details determining the success in establishing a mouse orthotopic liver Transplantation model. World J. Gastroenterol. 2020, 26, 3889–3898. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.; Yoshida, O.; Ono, Y.; Geller, D.A.; Thomson, A.W. Liver Transplantation in the mouse: Insights into liver immunobiology, tissue injury, and allograft tolerance. Liver Transplant. 2015, 22, 536–546. [Google Scholar] [CrossRef] [Green Version]
- Westhofen, S.; Jelinek, M.; Dreher, L.; Biermann, D.; Martin, J.; Vitzhum, H.; Reichenspurner, H.; Ehmke, H.; Schwoerer, A.P. The heterotopic heart Transplantation in mice as a small animal model to study mechanical unloading—Establishment of the procedure, perioperative management and postoperative scoring. PLoS ONE 2019, 14, e0214513. [Google Scholar] [CrossRef]
- Ishii, E.; Shimizu, A.; Takahashi, M.; Terasaki, M.; Kunugi, S.; Nagasaka, S.; Terasaki, Y.; Ohashi, R.; Masuda, Y.; Fukuda, Y. Surgical technique of orthotopic liver Transplantation in rats: The Kamada technique and a new splint technique for hepatic artery reconstruction. J. Nippon. Med. Sch. 2013, 80, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamada, N.; Calne, R.Y. A surgical experience with five hundred thirty liver Transplants in the rat. Surgery 1983, 93, 64–69. [Google Scholar]
- Man, K.; Lo, C.-M.; Oi-Lin, I.; Wong, Y.-C.; Qin, L.-F.; Fan, S.-T.; Wong, J. Liver Transplantantation in Rats Using Small-for-Size Grafts: A Study of Hemodynamic and Morphological Changes. Arch. Surg. 2001, 136, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldani, G.; Maestri, M.; Gaspari, A.; Lillo, E.; Angelastri, G.; Lenti, L.M.; Rademacher, J.; Alessiani, M.; Dionigi, P. A Novel Technique for Rat Liver Transplantantation Using Quick Linker System: A Preliminary Result. J. Surg. Res. 2008, 149, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.N.A. Kidney Transplantation in the rat: A modified technique using hydrodissection. Microsurgery 2006, 26, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Pahlavan, P.; Mehrabi, A.; Kashfi, A.; Soleimani, M.; Fani-Yazdi, S.; Schemmer, P.; Gutt, C.; Friess, H.; Weitz, J.; Kraus, T.; et al. Guidelines for Prevention and Management of Complications Following Kidney Transplantantation in Rats. Transplant. Proc. 2005, 37, 2333–2337. [Google Scholar] [CrossRef] [PubMed]
- Karatzas, T.; Santiago, S.; Xanthos, T.; de Faria, W.; Gandia, C.; Kostakis, A. An easy and safe model of kidney Transplantation in rats. Microsurgery 2007, 27, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Pahlavan, P.S.; Smallegange, C.; Adams, M.A.; Schumacher, M. Kidney Transplantation procedures in rats: Assessments, complications, and management. Microsurgery 2006, 26, 404–411. [Google Scholar] [CrossRef]
- Gu, Y.L.; Dahmen, U.; Dirsch, O.; Broelsch, C.E. Improved renal Transplantation in the rat with a nonsplinted ureteroureterostomy. Microsurgery 2002, 22, 204–210. [Google Scholar] [CrossRef]
- Yuzefovych, Y.; Valdivia, E.; Rong, S.; Hack, F.; Rother, T.; Schmitz, J.; Bräsen, J.H.; Wedekind, D.; Moers, C.; Wenzel, N.; et al. Genetic Engineering of the Kidney to Permanently Silence MHC Transcripts During ex vivo Organ Perfusion. Front. Immunol. 2020, 11, 265. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.R.; Qi, L.; Iwasaki, K.; Wang, W.; Wesson, R.N.; Cameron, A.M.; Sun, Z. Orthotopic Rat Kidney Transplantantation: A Novel and Simplified Surgical Approach. JoVE 2019, e59403. [Google Scholar] [CrossRef] [Green Version]
- Farrar, C.A.; Keogh, B.; McCormack, W.; O’Shaughnessy, A.; Parker, A.; Reilly, M.; Sacks, S.H. Inhibition of TLR2 promotes graft function in a murine model of renal Transplant ischemia-reperfusion injury. FASEB J. 2012, 26, 799–807. [Google Scholar] [CrossRef]
- Gueler, F.; Shushakova, N.; Mengel, M.; Hueper, K.; Chen, R.; Liu, X.; Park, J.-K.; Haller, H.; Wensvoort, G.; Rong, S. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantantation in Mice. PLoS ONE 2015, 10, e0115709. [Google Scholar] [CrossRef] [PubMed]
- Sörensen, I.; Rong, S.; Susnik, N.; Gueler, F.; Shushakova, N.; Albrecht, M.; Dittrich, A.-M.; Von Vietinghoff, S.; Becker, J.U.; Melk, A.; et al. Bβ15–42 Attenuates the Effect of Ischemia-Reperfusion Injury in Renal Transplantantation. J. Am. Soc. Nephrol. 2011, 22, 1887–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-J.; Hockenheimer, S.; Bickerstaff, A.A.; Hadley, G.A. Murine Renal Transplantantation Procedure. J. Vis. Exp. 2009, 2009, e1150. [Google Scholar] [CrossRef]
- Zhao, D.; Liao, T.; Li, S.; Zhang, Y.; Zheng, H.; Zhou, J.; Han, F.; Dong, Y.; Sun, Q. Mouse Model Established by Early Renal Transplantantation After Skin Allograft Sensitization Mimics Clinical Antibody-Mediated Rejection. Front. Immunol. 2018, 9, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plenter, R.; Jain, S.; Ruller, C.M.; Nydam, T.L.; Jani, A.H. Murine Kidney Transplantant Technique. J. Vis. Exp. 2015, 2015, e52848. [Google Scholar] [CrossRef] [Green Version]
- Giraud, S.; Favreau, F.; Chatauret, N.; Thuillier, R.; Maiga, S.; Hauet, T. Contribution of Large Pig for Renal Ischemia-Reperfusion and Transplantantation Studies: The Preclinical Model. J. Biomed. Biotechnol. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Q.; Fan, H.; Xiong, R.; Jiang, Y. A rat model of liver Transplantation with a steatotic donor liver after cardiac death. Int. J. Clin. Exp. Med. 2015, 8, 15724–15730. [Google Scholar]
- Feng, Y.; Han, Z.; Feng, Z.; Wang, B.; Cheng, H.; Yang, L.; Li, Y.; Gu, B.; Li, X.; Li, Y.; et al. Approaching treatment for immunological rejection of living-donor liver Transplantation in rats. BMC Gastroenterol. 2020, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kashfi, A.; Mehrabi, A.; Pahlavan, P.S.; Schemmer, P.; Gutt, C.N.; Stahlheber, O.; Schmidt, J.; Büchler, M.W.; Kraus, T. A Review of Various Techniques of Orthotopic Liver Transplantantation in the Rat. Transplant. Proc. 2004, 78, 635. [Google Scholar] [CrossRef]
- Martins, P.N.A. Assessment of graft function in rodent models of heart Transplantation. Microsurgery 2008, 28, 565–570. [Google Scholar] [CrossRef]
- Wood, S.; Feng, J.; Chung, J.; Radojcic, V.; Sandy-Sloat, A.R.; Friedman, A.; Shelton, A.; Yan, M.; Siebel, C.W.; Bishop, D.K.; et al. Transient Blockade of Delta-like Notch Ligands Prevents Allograft Rejection Mediated by Cellular and Humoral Mechanisms in a Mouse Model of Heart Transplantantation. J. Immunol. 2015, 194, 2899–2908. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Segiser, A.; Carrel, T.P.; Stahel, H.T.T.; Most, H. Rat Heterotopic Heart Transplantantation Model to Investigate Unloading-Induced Myocardial Remodeling. Front. Cardiovasc. Med. 2016, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Huang, Y.; Feng, L.; Luo, L.; Li, C.; Ke, N.; Zhang, C.; Li, Y. A Modified Technique for Heterotopic Heart Transplantantation in Rats. J. Surg. Res. 2010, 164, 155–161. [Google Scholar] [CrossRef]
- Laschinger, M.; Assfalg, V.; Matevossian, E.; Friess, H.; Huser, N. Potential of Heterotopic Cardiac Transplantantation in Mice as a Model for Elucidating Mechanisms of Graft Rejection. Card. Transpl. 2012, 125. [Google Scholar] [CrossRef] [Green Version]
- Heron, I. A technique for accessory cervical heart Transplantation in rabbits and rats. Acta Pathol. Microbiol. Scand. Sect. A Pathol. 1971, 79, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qiu, Q.; Wang, H.; Whitman, S.A.; Fang, D.; Lian, F.; Zhang, N.D. Nrf2 Is Crucial to Graft Survival in a Rodent Model of Heart Transplantantation. Oxidative Med. Cell. Longev. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wehner, J.R.; Morrell, C.N.; Rodriguez, E.R.; Fairchild, R.L.; Baldwin, W.M. Immunological Challenges of Cardiac Transplantantation: The need for Better Animal Models to Answer Current Clinical Questions. J. Clin. Immunol. 2009, 29, 722–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bribriesco, A.C.; Li, W.; Nava, R.G.; Spahn, J.H.; Kreisel, D. Experimental models of lung Transplantation. Front. Biosci. (Elite Ed.) 2013, 5, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Pérez, D.; Largo, C.; García-Río, F. Technical Aspects and Benefits of Experimental Mouse Lung Transplantantation. Arch. Bronconeumol. 2016, 52, 596–604. [Google Scholar] [CrossRef]
- De Vleeschauwer, S.; Jungraithmayr, W.; Wauters, S.; Willems, S.; Rinaldi, M.; Vaneylen, A.; Verleden, S.; Widyastuti, A.; Bracke, K.; Brusselle, G.; et al. Chronic Rejection Pathology after Orthotopic Lung Transplantantation in Mice: The Development of a Murine BOS Model and Its Drawbacks. PLoS ONE 2012, 7, e29802. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.C.; Huang, C.A.; Mathes, D.W. Tolerance Protocols in Large Animal VCA Models—Comprehensive Review. Curr. Transpl. Rep. 2020, 7, 270–278. [Google Scholar] [CrossRef]
- Anderson, D.J.; Kirk, A.D. Primate Models in Organ Transplantantation. Cold Spring Harb. Perspect. Med. 2013, 3, a015503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, S.E.; Ho, C.-S.; Ando, A.; Rogel-Gaillard, C.; Charles, M.; Tector, M.; Tector, A.J.; Lunney, J.K. Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research. Annu. Rev. Anim. Biosci. 2020, 8, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Dehoux, J.-P.; Gianello, P. The importance of large animal models in Transplantation. Front. Biosci. 2007, 12, 4864–4880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, J.; Ahmed, S.; Gerritsen, K.G.F.; Mihaila, S.M.; Masereeuw, R. Kidney-based in vitro models for drug-induced toxicity testing. Arch. Toxicol. 2019, 93, 3397–3418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fransen, M.F.; Addario, G.; Bouten, C.V.; Halary, F.; Moroni, L.; Mota, C. Bioprinting of kidney in vitro models: Cells, biomaterials, and manufacturing techniques. Essays Biochem. 2021, 65, 587–602. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Iwami, D.; Fujimura, T.; Kume, H.; Yokoo, T.; Kobayashi, E. Techniques of orthotopic renal Transplantation in pigs. One donor to two recipients via inverted grafting. Acta Cir. Bras. 2021, 36, e360208. [Google Scholar] [CrossRef]
- Packialakshmi, B.; Stewart, I.J.; Burmeister, D.M.; Chung, K.K.; Zhou, X. Large animal models for translational research in acute kidney injury. Ren. Fail. 2020, 42, 1042–1058. [Google Scholar] [CrossRef]
- Zonta, S.; Lovisetto, F.; Lorenzo, C.; Abbiati, F.; Alessiani, M.; Dionigi, P.; Zonta, A. Uretero-neocystostomy in a swine model of kidney Transplantation: A new technique. J. Surg. Res. 2005, 124, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Golriz, M.; Fonouni, H.; Nickkholgh, A.; Hafezi, M.; Garoussi, C.; Mehrabi, A. Pig Kidney Transplantantation: An Up-To-Date Guideline. Eur. Surg. Res. 2012, 49, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inomata, K.; Tajima, K.; Yagi, H.; Higashi, H.; Shimoda, H.; Matsubara, K.; Hibi, T.; Abe, Y.; Tsujikawa, H.; Kitago, M.; et al. A Pre-Clinical Large Animal Model of Sustained Liver Injury and Regeneration Stimulus. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.J.G.; Tannuri, A.C.A.; Belon, A.R.; Guimarães, R.R.N.; Coelho, M.C.M.; Gonçalves, J.D.O.; Serafini, S.; De Melo, E.S.; Tannuri, U. Effects of ischemic preconditioning in a pig model of large-for-size liver Transplantation. Clinics 2015, 70, 126–135. [Google Scholar] [CrossRef]
- Siefert, J.; Hillebrandt, K.H.; Moosburner, S.; Podrabsky, P.; Geisel, D.; Denecke, T.; Unger, J.K.; Sawitzki, B.; Gül-Klein, S.; Lippert, S.; et al. Hepatocyte Transplantantation to the Liver via the Splenic Artery in a Juvenile Large Animal Model. Cell Transplantant. 2019, 28, 14S–24S. [Google Scholar] [CrossRef]
- Forbes, S.J.; Gupta, S.; Dhawan, A. Cell therapy for liver disease: From liver Transplantation to cell factory. J. Hepatol. 2015, 62, S157–S169. [Google Scholar] [CrossRef] [Green Version]
- Spannbauer, A.; Traxler-Weidenauer, D.; Zlabinger, K.; Gugerell, A.; Winkler, J.; Mester-Tonczar, J.; Lukovic, D.; Müller, C.; Riesenhuber, M.; Pavo, N.; et al. Large Animal Models of Heart Failure With Reduced Ejection Fraction (HFrEF). Front. Cardiovasc. Med. 2019, 6, 117. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.V.P.; Alvarez, J.S.; Yu1, F.; Adamson, M.B.; Fukunaga, N.; Serrick, C.; Bissoondath, V.; Meineri, M.; Badiwala, M.V.; Rao, V. A Pre-Clinical Porcine Model of Orthotopic Heart Transplantantation. JoVE 2019, e59197. [Google Scholar] [CrossRef] [Green Version]
- Bianco, R.W.; Gallegos, R.P.; Rivard, A.L.; Voight, J.; Dalmasso, A.P. Animal Models for Cardiac Research. In Handbook of Cardiac Anatomy, Physiology, and Devices; Springer: Berlin/Heidelberg, Germany, 2009; pp. 393–410. [Google Scholar]
- Nelson, K.; Bobba, C.; Ghadiali, S.; Jr, D.H.; Black, S.M.; A Whitson, B. Animal models of ex vivo lung perfusion as a platform for Transplantation research. World J. Exp. Med. 2014, 4, 7–15. [Google Scholar] [CrossRef]
- Mariscal, A.; Caldarone, L.; Tikkanen, J.; Nakajima, D.; Chen, M.; Yeung, J.; Cypel, M.; Liu, M.; Keshavjee, S. Pig lung Transplant survival model. Nat. Protoc. 2018, 13, 1814–1828. [Google Scholar] [CrossRef]
- Woodall, J.D.; Schultz, B.D.; Sosin, M.; Barth, R.N. Large Animal Models for Vascularized Composite AlloTransplantation. Curr. Transpl. Rep. 2014, 1, 190–196. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, C.; Oliveira, M.C.; Chen-Wacker, C.; Jansson, K.; Hoeffler, K.; Yuzefovych, Y.; Pogozhykh, O.; Jin, Z.; Kuehnel, M.; Jonigk, D.; et al. Immunoengineering of the Vascular Endothelium to Silence MHC Expression During Normothermic Ex Vivo Lung Perfusion. Hum. Gene Ther. 2019, 30, 485–496. [Google Scholar] [CrossRef]
- Hackam, D.G.; Redelmeier, D.A. Translation of Research Evidence from Animals to Humans. JAMA 2006, 296, 1727–1732. [Google Scholar] [CrossRef]
- Anderson, D.J.; Martin, B.M.; Kirk, A.D.; Sachs, D.H. Large Animal Models of Transplantantation. Textb. Organ Transpl. 2014, 185–207. [Google Scholar] [CrossRef]
- Brandacher, G.; Grahammer, J.; Sucher, R.; Lee, W.-P.A. Animal models for basic and translational research in reconstructive Transplantation. Birth Defects Res. Part C Embryo Today Rev. 2012, 96, 39–50. [Google Scholar] [CrossRef]
- Cendales, L. Animal Models in Immunology and Transplantant Medicine. ILAR J. 2011, 52, 498–501. [Google Scholar] [CrossRef] [Green Version]
- Robinson, N.B.; Krieger, K.; Khan, F.M.; Huffman, W.; Chang, M.; Naik, A.; Yongle, R.; Hameed, I.; Krieger, K.; Girardi, L.N.; et al. The current state of animal models in research: A review. Int. J. Surg. 2019, 72, 9–13. [Google Scholar] [CrossRef] [PubMed]
Small Animal Model (Mouse, Rat, Guinea Pig, Rabbit) | Large Animal Model (Pig, Sheep, Goat, Dogs, Nonhuman Primates) | ||
---|---|---|---|
Pro | Con | Pro | Con |
Large availability of markers, antibodies, and other reagents | Limitations in sample volume and number of repeated sampling | Larger volumes of samples and higher frequency of sampling possible, potentially increasing statistical power | Reduced availability of reagents |
Easy breeding, cheap, easy handling | Short lifespan | Longer lifespan for chronic models | Costly, long breeding periods, difficult handling |
Reduced costs for pharmacological substances, because of body weight | Rapid disease induction in surgical models vs. mostly slow disease progression in patients | Surgeries easier to perform | Increased regulatory requirements |
Sequenced genome | Often inbred strains, do not reflect the heterogeneity of the patient population | Mostly out bred population, better representing the heterogeneity of population, physiologically and anatomically similar to human (body size, tissue structure, and life expectancy) and with greater sequencehomology | High ethical concern |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenzel, N.; Blasczyk, R.; Figueiredo, C. Animal Models in Allogenic Solid Organ Transplantation. Transplantology 2021, 2, 412-424. https://doi.org/10.3390/transplantology2040039
Wenzel N, Blasczyk R, Figueiredo C. Animal Models in Allogenic Solid Organ Transplantation. Transplantology. 2021; 2(4):412-424. https://doi.org/10.3390/transplantology2040039
Chicago/Turabian StyleWenzel, Nadine, Rainer Blasczyk, and Constanca Figueiredo. 2021. "Animal Models in Allogenic Solid Organ Transplantation" Transplantology 2, no. 4: 412-424. https://doi.org/10.3390/transplantology2040039
APA StyleWenzel, N., Blasczyk, R., & Figueiredo, C. (2021). Animal Models in Allogenic Solid Organ Transplantation. Transplantology, 2(4), 412-424. https://doi.org/10.3390/transplantology2040039