Artificial Intelligence in Restrictive Cardiomyopathy: Current Diagnostic Applications and Future Directions
Abstract
1. Introduction
2. Current Diagnostic Pathway in RCM
2.1. Laboratory Evaluation
2.2. Echocardiography
2.3. Cardiac Magnetic Resonance Imaging
2.4. Nuclear Imaging
2.5. Electrocardiogram
2.6. Invasive Studies: Endomyocardial Biopsy and Right Heart Catheterization
3. AI Applications in RCM Diagnostics
3.1. Echocardiography: From Parameter-Based to Pattern Recognition
3.2. CMR: Moving Beyond LV and Contrast-Centric Diagnosis
3.3. Electrocardiogram—A Scalable Tool for Early RCM Suspicion
3.4. Other Data Streams: Electronic Health Records and Disease Biomarkers
4. Discussion
4.1. Clinical Implications of Earlier and More Accurate Diagnosis
4.2. Practical Barriers to Clinical Translation
4.3. Ethical and Implementation Considerations
4.4. Future Directions and Research Priorities
4.4.1. From Detection to Prognostication
4.4.2. Integrating Multi-Omic and Imaging Data
4.4.3. Federated and Collaborative Learning Networks
4.4.4. Explainability, Trust, and Clinician-in-the-Loop Systems
4.4.5. Towards Precision Therapeutics
4.5. Synthesis and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| A4C | Apical four-chamber (view) |
| AI | Artificial intelligence |
| AL | Light-chain (amyloidosis) |
| AMC | Associative memory classifier |
| AS | Aortic stenosis |
| ATTR | Transthyretin amyloidosis |
| ATTR-CM | Transthyretin amyloid cardiomyopathy |
| ATTRwt-CM | Wild-type transthyretin amyloid cardiomyopathy |
| AUC | Area under the curve |
| AUROC | Area under the receiver operating characteristic curve |
| bSSFP/SSFP | (Balanced) steady-state free precession |
| BiLSTM | Bidirectional long short-term memory (network) |
| BNP | B-type natriuretic peptide |
| CA | Cardiac amyloidosis |
| CI | Confidence interval |
| CMR | Cardiac magnetic resonance |
| CNN | Convolutional neural network |
| CP | Constrictive pericarditis |
| CTRL | Control (group) |
| CS | Constraint satisfaction |
| DL | Deep learning |
| DPD | 3,3-Diphosphono-1,2-propanodicarboxylic acid (bone-avid tracer) |
| ECG | Electrocardiography |
| ECV | Extracellular volume |
| EHR | Electronic health records |
| EF | Ejection fraction |
| EMB | Endomyocardial biopsy |
| F1 | F1-score (harmonic mean of precision and recall) |
| GLS | Global longitudinal strain |
| HCM | Hypertrophic cardiomyopathy |
| HMDP | Hydroxymethylene diphosphonate (bone-avid tracer) |
| HR | Hazard ratio |
| HTN | Hypertension |
| LBBB | Left bundle branch block |
| LGE | Late gadolinium enhancement |
| LA | Left atrium |
| LV/RV | Left ventricle/Right ventricle |
| LVH | Left ventricular hypertrophy |
| ML | Machine learning |
| MV | Mitral valve (A/E velocities) |
| PPV | Positive predictive value |
| PYP (99mTc-PYP) | Technetium-99m pyrophosphate (bone-avid tracer) |
| RCM | Restrictive cardiomyopathy |
| ResNet | Residual Network (DL architecture) |
| RGB | Red-green-blue (color frames) |
| RHC | Right heart catheterization |
| ROI | Region of interest |
| SPECT | Single-photon emission computed tomography |
| STE | Speckle-tracking echocardiography |
| SVM | Support vector machine |
| T2* | T2-star (CMR iron quantification) |
| TTE | Transthoracic echocardiography |
| XAI | Explainable AI |
| XGBoost | Extreme Gradient Boosting (algorithm) |
References
- Brown, K.N.; Pendela, V.S.; Ahmed, I.; Diaz, R.R. Restrictive Cardiomyopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Rapezzi, C.; Aimo, A.; Barison, A.; Emdin, M.; Porcari, A.; Linhart, A.; Keren, A.; Merlo, M.; Sinagra, G. Restrictive Cardiomyopathy: Definition and Diagnosis. Eur. Heart J. 2022, 43, 4679–4693. [Google Scholar] [CrossRef]
- Muchtar, E.; Blauwet, L.A.; Gertz, M.A. Restrictive Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res. 2017, 121, 819–837. [Google Scholar] [CrossRef]
- Bukhman, G.; Ziegler, J.; Parry, E. Endomyocardial Fibrosis: Still a Mystery after 60 Years. PLoS Negl. Trop. Dis. 2008, 2, e97. [Google Scholar] [CrossRef]
- Biondi-Zoccai, G.; D’Ascenzo, F.; Giordano, S.; Mirzoyev, U.; Erol, Ç.; Cenciarelli, S.; Leone, P.; Versaci, F. Artificial Intelligence in Cardiology: General Perspectives and Focus on Interventional Cardiology. Anatol. J. Cardiol. 2025, 29, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Lundervold, A.S.; Lundervold, A. An Overview of Deep Learning in Medical Imaging Focusing on MRI. Z. Med. Phys. 2019, 29, 102–127. [Google Scholar] [CrossRef]
- Ouyang, D.; He, B.; Ghorbani, A.; Yuan, N.; Ebinger, J.; Langlotz, C.P.; Heidenreich, P.A.; Harrington, R.A.; Liang, D.H.; Ashley, E.A. Video-Based AI for Beat-to-Beat Assessment of Cardiac Function. Nature 2020, 580, 252–256. Available online: https://www.nature.com/articles/s41586-020-2145-8 (accessed on 8 October 2025). [CrossRef]
- Tison, G.H.; Zhang, J.; Delling, F.N.; Deo, R.C. Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005289. [Google Scholar] [CrossRef]
- Slivnick, J.A.; Hawkes, W.; Oliveira, J.; Woodward, G.; Akerman, A.; Gomez, A.; Hamza, I.; Desai, V.K.; Barrett-O’Keefe, Z.; Grogan, M.; et al. Cardiac Amyloidosis Detection from a Single Echocardiographic Video Clip: A Novel Artificial Intelligence-Based Screening Tool. Eur. Heart J. 2025, 46, 4090–4101. [Google Scholar] [CrossRef] [PubMed]
- Gunjal, A.; Judgi, T. A Comprehensive Survey of Artificial Intelligence Methods for Cardiovascular Disease Detection: Recent Advances and Future Challenges. MethodsX 2025, 15, 103678. [Google Scholar] [CrossRef] [PubMed]
- Rivera Boadla, M.E.; Sharma, N.R.; Varghese, J.; Lamichhane, S.; Khan, M.H.; Gulati, A.; Khurana, S.; Tan, S.; Sharma, A. Multimodal Cardiac Imaging Revisited by Artificial Intelligence: An Innovative Way of Assessment or Just an Aid? Cureus 2024, 16, e64272. [Google Scholar] [CrossRef]
- Rammos, A.; Meladinis, V.; Vovas, G.; Patsouras, D. Restrictive Cardiomyopathies: The Importance of Noninvasive Cardiac Imaging Modalities in Diagnosis and Treatment—A Systematic Review. Radiol. Res. Pract. 2017, 2017, 2874902. [Google Scholar] [CrossRef]
- Ainslie, G.M.; Benatar, S.R. Serum Angiotensin Converting Enzyme in Sarcoidosis: Sensitivity and Specificity in Diagnosis: Correlations with Disease Activity, Duration, Extra-Thoracic Involvement, Radiographic Type and Therapy. QJM Int. J. Med. 1985, 55, 253–270. [Google Scholar] [CrossRef]
- 2023 ESC Guidelines for the Management of Cardiomyopathies. Available online: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Cardiomyopathy-Guidelines (accessed on 8 October 2025).
- Liu, S.; Ma, C.; Ren, W.; Zhang, J.; Li, N.; Yang, J.; Zhang, Y.; Qiao, W. Regional Left Atrial Function Differentiation in Patients with Constrictive Pericarditis and Restrictive Cardiomyopathy: A Study Using Speckle Tracking Echocardiography. Int. J. Cardiovasc. Imaging 2015, 31, 1529–1536. Available online: https://link.springer.com/article/10.1007/s10554-015-0726-7 (accessed on 8 October 2025). [CrossRef] [PubMed]
- Gowda, S.N.; Ali, H.-J.; Hussain, I. Overview of Restrictive Cardiomyopathies. Methodist DeBakey Cardiovasc. J. 2022, 18, 4–16. [Google Scholar] [CrossRef]
- Habib, G.; Bucciarelli-Ducci, C.; Caforio, A.L.P.; Cardim, N.; Charron, P.; Cosyns, B.; Dehaene, A.; Derumeaux, G.; Donal, E.; Dweck, M.R.; et al. Multimodality Imaging in Restrictive Cardiomyopathies: An EACVI Expert Consensus Document In Collaboration with the “Working Group on Myocardial and Pericardial Diseases” of the European Society of Cardiology Endorsed by The Indian Academy of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1090–1121. [Google Scholar] [CrossRef] [PubMed]
- Tanner, M.A.; Galanello, R.; Dessi, C.; Smith, G.C.; Westwood, M.A.; Agus, A.; Pibiri, M.; Nair, S.V.; Walker, J.M.; Pennell, D.J. Combined Chelation Therapy in Thalassemia Major for the Treatment of Severe Myocardial Siderosis with Left Ventricular Dysfunction. J. Cardiovasc. Magn. Reson. 2008, 10, 12. [Google Scholar] [CrossRef]
- Karamitsos, T.D.; Francis, J.M.; Myerson, S.; Selvanayagam, J.B.; Neubauer, S. The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 1407–1424. [Google Scholar] [CrossRef]
- Li, W.; Uppal, D.; Wang, Y.C.; Xu, X.; Kokkinidis, D.G.; Travin, M.I.; Tauras, J.M. Nuclear Imaging for the Diagnosis of Cardiac Amyloidosis in 2021. Diagnostics 2021, 11, 996. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Maurer, M.S.; Falk, R.H.; Merlini, G.; Damy, T.; Dispenzieri, A.; Wechalekar, A.D.; Berk, J.L.; Quarta, C.C.; Grogan, M.; et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016, 133, 2404–2412. [Google Scholar] [CrossRef]
- Brownrigg, J.; Lorenzini, M.; Lumley, M.; Elliott, P. Diagnostic Performance of Imaging Investigations in Detecting and Differentiating Cardiac Amyloidosis: A Systematic Review and Meta-analysis. ESC Heart Fail. 2019, 6, 1041–1051. [Google Scholar] [CrossRef]
- Benz, D.C.; Flammer, A.J.; Schwotzer, R.; Buechel, R.R. How to Perform and Interpret Cardiac Amyloidosis Radionuclide Imaging (CARI). J. Nucl. Cardiol. 2025, 51, 102448. [Google Scholar] [CrossRef] [PubMed]
- Cardiac Amyloid Imaging with Tc-99m PYP—Challenges and Potential Solutions. Available online: http://member.asnc.org/blog_home.asp?display=446 (accessed on 2 November 2025).
- Pereira, N.L.; Grogan, M.; Dec, G.W. Spectrum of Restrictive and Infiltrative Cardiomyopathies. J. Am. Coll. Cardiol. 2018, 71, 1130–1148. [Google Scholar] [CrossRef]
- Burns, E.; Buttner, R. Restrictive Cardiomyopathy. Available online: https://litfl.com/restrictive-cardiomyopathy-ecg-library/ (accessed on 8 October 2025).
- Kieninger, B.; Eriksson, M.; Kandolf, R.; Schnabel, P.A.; Schönland, S.; Kristen, A.V.; Hegenbart, U.; Lohse, P.; Röcken, C. Amyloid in Endomyocardial Biopsies. Virchows Arch. 2010, 456, 523–532. [Google Scholar] [CrossRef]
- Restrictive Cardiomyopathy versus Constrictive Pericarditis: Role of Endomyocardial Biopsy in Avoiding Unnecessary Thoracotomy. Available online: https://www.ahajournals.org/doi/epdf/10.1161/01.CIR.75.5.1012 (accessed on 8 October 2025).
- Cooper, L.T.; Baughman, K.L.; Feldman, A.M.; Frustaci, A.; Jessup, M.; Kuhl, U.; Levine, G.N.; Narula, J.; Starling, R.C.; Towbin, J.; et al. The Role of Endomyocardial Biopsy in the Management of Cardiovascular Disease: A Scientific Statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J. Am. Coll. Cardiol. 2007, 50, 1914–1931. [Google Scholar] [CrossRef]
- Sorajja, P. Invasive Hemodynamics of Constrictive Pericarditis, Restrictive Cardiomyopathy, and Cardiac Tamponade. Cardiol. Clin. 2011, 29, 191–199. [Google Scholar] [CrossRef]
- Doshi, S.; Ramakrishnan, S.; Gupta, S.K. Invasive Hemodynamics of Constrictive Pericarditis. Indian Heart J. 2015, 67, 175–182. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Kern, M.J. Hemodynamics of Constrictive Pericarditis and Restrictive Cardiomyopathy. Catheter. Cardiovasc. Interv. 2020, 95, 1240–1248. [Google Scholar] [CrossRef]
- Vaitkus, P.T.; Kussmaul, W.G. Constrictive Pericarditis versus Restrictive Cardiomyopathy: A Reappraisal and Update of Diagnostic Criteria. Am. Heart J. 1991, 122, 1431–1441. [Google Scholar] [CrossRef]
- Manzi, L.; Sperandeo, L.; Forzano, I.; Castiello, D.S.; Florimonte, D.; Paolillo, R.; Santoro, C.; Mancusi, C.; Di Serafino, L.; Esposito, G.; et al. Contemporary Evidence and Practice on Right Heart Catheterization in Patients with Acute or Chronic Heart Failure. Diagnostics 2024, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Callan, P.; Clark, A.L. Right Heart Catheterisation: Indications and Interpretation. Heart Br. Card. Soc. 2016, 102, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.J.; Karim, S.A.; Rahman, T. AI-Powered Early Detection and Prognostic Modeling of Restrictive Cardiomyopathy Using Multimodal Non-Invasive Data. Malays. J. Sci. Adv. Technol. 2025, 5, 100–106. [Google Scholar] [CrossRef]
- De Melo, J.F.; Mangold, K.E.; Debertin, J.; Rosenbaum, A.; Bois, J.P.; Attia, Z.I.; Friedman, P.A.; Deshmukh, A.J.; Kapa, S.; Cooper, L.T.; et al. Detection of Cardiac Sarcoidosis with the Artificial Intelligence–Enhanced Electrocardiogram. Heart Rhythm 2025, 22, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.S.-W.; Chiu, I.; Tacon, P.; Abiragi, M.; Cao, L.; Hong, G.; Le, J.; Zou, J.; Daluwatte, C.; Ricchiuto, P.; et al. Detection of Cardiac Amyloidosis Using Machine Learning on Routine Echocardiographic Measurements. Open Heart 2024, 11, e002884. [Google Scholar] [CrossRef]
- Chao, C.-J.; Jeong, J.; Arsanjani, R.; Kim, K.; Tsai, Y.-L.; Yu, W.-C.; Farina, J.M.; Mahmoud, A.K.; Ayoub, C.; Grogan, M.; et al. Echocardiography-Based Deep Learning Model to Differentiate Constrictive Pericarditis and Restrictive Cardiomyopathy. JACC Cardiovasc. Imaging 2024, 17, 349–360. [Google Scholar] [CrossRef]
- Chen, W.-W.; Kuo, L.; Lin, Y.-X.; Yu, W.-C.; Tseng, C.-C.; Lin, Y.-J.; Huang, C.-C.; Chang, S.-L.; Wu, J.C.-H.; Chen, C.-K.; et al. A Deep Learning Approach to Classify Fabry Cardiomyopathy from Hypertrophic Cardiomyopathy Using Cine Imaging on Cardiac Magnetic Resonance. Int. J. Biomed. Imaging 2024, 2024, 6114826. [Google Scholar] [CrossRef]
- Taleie, H.; Hajianfar, G.; Sabouri, M.; Parsaee, M.; Houshmand, G.; Bitarafan-Rajabi, A.; Zaidi, H.; Shiri, I. Left Ventricular Myocardial Dysfunction Evaluation in Thalassemia Patients Using Echocardiographic Radiomic Features and Machine Learning Algorithms. J. Digit. Imaging 2023, 36, 2494–2506. [Google Scholar] [CrossRef]
- Eckstein, J.; Moghadasi, N.; Körperich, H.; Akkuzu, R.; Sciacca, V.; Sohns, C.; Sommer, P.; Berg, J.; Paluszkiewicz, J.; Burchert, W.; et al. Machine-Learning-Based Diagnostics of Cardiac Sarcoidosis Using Multi-Chamber Wall Motion Analyses. Diagnostics 2023, 13, 2426. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.M.; Mangold, K.; Suarez, A.B.; Scott, C.G.; Murphree, D.H.; Malik, A.; Attia, Z.I.; Lopez-Jimenez, F.; Friedman, P.A.; Dispenzieri, A.; et al. Postdevelopment Performance and Validation of the Artificial Intelligence-Enhanced Electrocardiogram for Detection of Cardiac Amyloidosis. JACC Adv. 2023, 2, 100612. [Google Scholar] [CrossRef]
- Goto, S.; Mahara, K.; Beussink-Nelson, L.; Ikura, H.; Katsumata, Y.; Endo, J.; Gaggin, H.K.; Shah, S.J.; Itabashi, Y.; MacRae, C.A.; et al. Artificial Intelligence-Enabled Fully Automated Detection of Cardiac Amyloidosis Using Electrocardiograms and Echocardiograms. Nat. Commun. 2021, 12, 2726. [Google Scholar] [CrossRef]
- Huda, A.; Castaño, A.; Niyogi, A.; Schumacher, J.; Stewart, M.; Bruno, M.; Hu, M.; Ahmad, F.S.; Deo, R.C.; Shah, S.J. A Machine Learning Model for Identifying Patients at Risk for Wild-Type Transthyretin Amyloid Cardiomyopathy. Nat. Commun. 2021, 12, 2725. [Google Scholar] [CrossRef]
- Grogan, M.; Lopez-Jimenez, F.; Cohen-Shelly, M.; Dispenzieri, A.; Attia, Z.I.; Ezzedine, O.F.A.; Lin, G.; Kapa, S.; Borgeson, D.D.; Friedman, P.A.; et al. Artificial Intelligence–Enhanced Electrocardiogram for the Early Detection of Cardiac Amyloidosis. Mayo Clin. Proc. 2021, 96, 2768–2778. [Google Scholar] [CrossRef]
- Schofield, R.; Ganeshan, B.; Fontana, M.; Nasis, A.; Castelletti, S.; Rosmini, S.; Treibel, T.A.; Manisty, C.; Endozo, R.; Groves, A.; et al. Texture Analysis of Cardiovascular Magnetic Resonance Cine Images Differentiates Aetiologies of Left Ventricular Hypertrophy. Clin. Radiol. 2019, 74, 140–149. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Huang, Y.-M.; Bansal, M.; Ashrafi, A.; Fisher, M.; Shameer, K.; Gall, W.; Dudley, J.T. Cognitive Machine-Learning Algorithm for Cardiac Imaging. Circ. Cardiovasc. Imaging 2016, 9, e004330. [Google Scholar] [CrossRef]
- Galea, N.; Polizzi, G.; Gatti, M.; Cundari, G.; Figuera, M.; Faletti, R. Cardiovascular Magnetic Resonance (CMR) in Restrictive Cardiomyopathies. Radiol. Med. 2020, 125, 1072–1086. [Google Scholar] [CrossRef]
- Saeed, M.; Liu, H.; Liang, C.-H.; Wilson, M.W. Magnetic Resonance Imaging for Characterizing Myocardial Diseases. Int. J. Cardiovasc. Imaging 2017, 33, 1395–1414. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, Y.; Cao, Z.; Wang, Y.; Weng, Z.; Wang, H.; Xu, L.; Chen, Z.; Chen, L.; Xue, Z.; et al. LGE-Guided Cross-Modality Contrastive Learning for Gadolinium-Free Cardiomyopathy Screening in Cine CMR. arXiv 2025, arXiv:2508.16927. [Google Scholar]
- Khan, L.A.; Shaikh, F.H.; Khan, M.S.; Zafar, B.; Farooqi, M.; Bold, B.; Aslam, H.M.; Essam, N.; Noor, I.; Siddique, A.; et al. Artificial Intelligence-Enhanced Electrocardiogram for the Diagnosis of Cardiac Amyloidosis: A Systemic Review and Meta-Analysis. Curr. Probl. Cardiol. 2024, 49, 102860. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa1805689?utm_source=chatgpt.com (accessed on 8 October 2025). [CrossRef] [PubMed]
- Selim, O.M.H.Z.; Ibrahim, A.S.A.H.; Aly, N.H.; Hegazy, S.N.A.; Ebeid, F.S.E. Early Detection of Myocardial Iron Overload in Patients with β-Thalassemia Major Using Cardiac Magnetic Resonance T1 Mapping. Magn. Reson. Imaging 2024, 114, 110250. [Google Scholar] [CrossRef]
- Hayashida, M.; Nohara, S.; Yamakawa, R.; Nishikido, A.; Matsushima, Y.; Yanai, T.; Ishimatsu, T.; Otsuka, M.; Fukumoto, Y. Iron Overload Cardiomyopathy in Myelodysplastic Syndrome: A Fatal Outcome After 20 Years of Chronic Transfusions. JACC Case Rep. 2025, 30, 104667. [Google Scholar] [CrossRef]
- Richardson, M.L.; Garwood, E.R.; Lee, Y.; Li, M.D.; Lo, H.S.; Nagaraju, A.; Nguyen, X.V.; Probyn, L.; Rajiah, P.; Sin, J.; et al. Noninterpretive Uses of Artificial Intelligence in Radiology. Acad. Radiol. 2021, 28, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Koh, T.; Tromp, J.; Chandramouli, C.; Ewe, S.H.; Ng, C.T.; Lee, A.S.Y.; Teo, L.L.Y.; Hummel, Y.; Huang, F.; et al. Point-of-Care AI-Enhanced Novice Echocardiography for Screening Heart Failure (PANES-HF). Sci. Rep. 2024, 14, 13503. [Google Scholar] [CrossRef]
- Narang, A.; Bae, R.; Hong, H.; Thomas, Y.; Surette, S.; Cadieu, C.; Chaudhry, A.; Martin, R.P.; McCarthy, P.M.; Rubenson, D.S.; et al. to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiol. 2021, 6, 624–632. Available online: https://jamanetwork.com/journals/jamacardiology/fullarticle/2776714 (accessed on 8 October 2025). [CrossRef] [PubMed]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Amadio, J.M.; Grogan, M.; Muchtar, E.; Lopez-Jimenez, F.; Attia, Z.I.; AbouEzzeddine, O.; Lin, G.; Dasari, S.; Kapa, S.; Borgeson, D.D.; et al. Predictors of Mortality by an Artificial Intelligence Enhanced Electrocardiogram Model for Cardiac Amyloidosis. ESC Heart Fail. 2025, 12, 677–682. [Google Scholar] [CrossRef]
- Gunzer, F.; Jantscher, M.; Hassler, E.M.; Kau, T.; Reishofer, G. Reproducibility of Artificial Intelligence Models in Computed Tomography of the Head: A Quantitative Analysis. Insights Imaging 2022, 13, 173. [Google Scholar] [CrossRef]
- Moassefi, M.; Rouzrokh, P.; Conte, G.M.; Vahdati, S.; Fu, T.; Tahmasebi, A.; Younis, M.; Farahani, K.; Gentili, A.; Kline, T.; et al. Reproducibility of Deep Learning Algorithms Developed for Medical Imaging Analysis: A Systematic Review. J. Digit. Imaging 2023, 36, 2306–2312. [Google Scholar] [CrossRef]
- Haibe-Kains, B.; Adam, G.A.; Hosny, A.; Khodakarami, F.; Waldron, L.; Wang, B.; McIntosh, C.; Goldenberg, A.; Kundaje, A.; Greene, C.S.; et al. Transparency and Reproducibility in Artificial Intelligence. Nature 2020, 586, E14–E16. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. [Google Scholar] [CrossRef]
- Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Can. J. Cardiol. 2022, 38, 204–213. [Google Scholar] [CrossRef]
- Puyol Anton, E.; Ruijsink, B.; Piechnik, S.K.; Neubauer, S.; Petersen, S.E.; Razavi, R.; King, A.P. Fairness in AI: Are Deep Learning-Based CMR Segmentation Algorithms Biased? Eur. Heart J. 2021, 42, ehab724.3055. [Google Scholar] [CrossRef]
- Bellamy, R.K.E.; Dey, K.; Hind, M.; Hoffman, S.C.; Houde, S.; Kannan, K.; Lohia, P.; Martino, J.; Mehta, S.; Mojsilović, A.; et al. AI Fairness 360: An Extensible Toolkit for Detecting and Mitigating Algorithmic Bias. IBM J. Res. Dev. 2019, 63, 4:1–4:15. [Google Scholar] [CrossRef]
- John-Mathews, J.-M.; Cardon, D.; Balagué, C. From Reality to World. A Critical Perspective on AI Fairness. J. Bus. Ethics 2022, 178, 945–959. [Google Scholar] [CrossRef]
- Rodrigues, R. Legal and Human Rights Issues of AI: Gaps, Challenges and Vulnerabilities. J. Responsible Technol. 2020, 4, 100005. [Google Scholar] [CrossRef]
- Wachter, S.; Mittelstadt, B. A Right to Reasonable Inferences: Re-Thinking Data Protection Law in the Age of Big Data and AI. Columbia Bus. Law Rev. 2019, 2019, 494. [Google Scholar]
- Salavati, A.; van der Wilt, C.N.; Calore, M.; van Es, R.; Rampazzo, A.; van der Harst, P.; van Steenbeek, F.G.; van Tintelen, J.P.; Harakalova, M.; te Riele, A.S.J.M. Artificial Intelligence Advancements in Cardiomyopathies: Implications for Diagnosis and Management of Arrhythmogenic Cardiomyopathy. Curr. Heart Fail. Rep. 2024, 22, 5. [Google Scholar] [CrossRef]
- Patient Perspectives on Informed Consent for Medical AI: A Web-Based Experiment—Hai Jin Park, 2024. Available online: https://journals.sagepub.com/doi/10.1177/20552076241247938 (accessed on 8 October 2025).
- Epistemological and Bibliometric Analysis of Ethics and Shared Responsibility—Health Policy and IoT Systems. Available online: https://www.mdpi.com/2071-1050/13/15/8355 (accessed on 8 October 2025).
- Huang, Y.-C.; Hsu, Y.-C.; Liu, Z.-Y.; Lin, C.-H.; Tsai, R.; Chen, J.-S.; Chang, P.-C.; Liu, H.-T.; Lee, W.-C.; Wo, H.-T.; et al. Artificial Intelligence-Enabled Electrocardiographic Screening for Left Ventricular Systolic Dysfunction and Mortality Risk Prediction. Front. Cardiovasc. Med. 2023, 10, 1070641. [Google Scholar] [CrossRef]
- Mohammadi, I.; Farahani, S.; Karimi, A.; Jahanian, S.; Firouzabadi, S.R.; Alinejadfard, M.; Fatemi, A.; Hajikarimloo, B.; Akhlaghpasand, M. Mortality Prediction of Heart Transplantation Using Machine Learning Models: A Systematic Review and Meta-Analysis. Front. Artif. Intell. 2025, 8, 1551959. [Google Scholar] [CrossRef]
- Lin, M.; Guo, J.; Gu, Z.; Tang, W.; Tao, H.; You, S.; Jia, D.; Sun, Y.; Jia, P. Machine Learning and Multi-Omics Integration: Advancing Cardiovascular Translational Research and Clinical Practice. J. Transl. Med. 2025, 23, 388. [Google Scholar] [CrossRef] [PubMed]
- Linardos, A.; Kushibar, K.; Walsh, S.; Gkontra, P.; Lekadir, K. Federated Learning for Multi-Center Imaging Diagnostics: A Simulation Study in Cardiovascular Disease. Sci. Rep. 2022, 12, 3551. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Wang, Q.; Shi, J.; Wang, H.; Ye, Z.; Xue, P.; Qiao, Y. Impact of Human and Artificial Intelligence Collaboration on Workload Reduction in Medical Image Interpretation. Npj Digit. Med. 2024, 7, 349. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, P.; Desman, J.; Sabounchi, M.; Nadkarni, G.N.; Sakhuja, A. A Primer on Reinforcement Learning in Medicine for Clinicians. Npj Digit. Med. 2024, 7, 337. Available online: https://www.nature.com/articles/s41746-024-01316-0?utm_source=chatgpt.com (accessed on 8 October 2025). [CrossRef] [PubMed]
- Tripathy, J.; Balasubramani, M.; Rajan, V.A.; Aeron, A.; Arora, M. Reinforcement Learning for Optimizing Real-Time Interventions and Personalized Feedback Using Wearable Sensors. Meas. Sens. 2024, 33, 101151. [Google Scholar] [CrossRef]
| Author | Year | Modality | Study Type/Sample Size | RCM Substrate/Condition | AI Method | Input Data | Key Performance (AUC/Accuracy) |
|---|---|---|---|---|---|---|---|
| Islam MJ, Karim SA, Rahman T [36] | 2025 | Multimodal (EHR + Imaging + Genetic + Biomarkers) | Experimental; n = 500 patients (1500 MRI scans; MIMIC-IV, ACDC, ClinVar) | Restrictive cardiomyopathy | Hybrid DL (CNN for imaging + BiLSTM for EHR; Bayesian optimization) | MRI, echocardiography, EHR trends, genetic markers, BNP and inflammatory biomarkers | Accuracy 93%; Precision 0.90; Recall 0.91; F1-score 0.90 * |
| de Melo JF Jr et al. [37] | 2025 | ECG | Single-center retrospective; 29,282 patients (242 CS, 29,040 controls) | Cardiac sarcoidosis (definite + probable) | DL CNN (10 s 12-lead raw waveforms) | Raw digital ECG signals (<1 year from diagnosis) | AUC 0.90 (95% CI 0.86–0.95); Sensitivity 83%; Specificity 85%; consistent across EF < 50% and ≥50% subgroups |
| Chang RS-W et al. [38] | 2024 | Echocardiography | Retrospective single-center study; 3603 echocardiograms from 636 patients (231 CA, 405 controls) | CA (ATTR and AL)—representative RCM phenotype | Random Forest (ML) | 19 routine echo parameters (e.g., GLS, LVPWd, LA area, MV A/E velocities) | AUC 0.84 (19 features); Sensitivity 0.82; Specificity 0.73; PPV 0.76 |
| Chao C-J et al. [39] | 2024 | Echocardiography (A4C TTE) | Retrospective; n = 381 (184 CP, 197 CA) + external validation (n = 23, Taiwan) | Constrictive pericarditis vs. CA | DL (ResNet50 CNN with motion-embedded RGB frames + meta-learner) | Raw apical 4-chamber cine loops converted to augmented frame-based images | AUC 0.97 (internal), 0.84 (external), 0.95 (internal mixed cohort); precision ≈ 0.93–0.97 |
| Chen WW et al. [40] | 2024 | CMR (cine SSFP short-axis) | Retrospective dual-center (TVGH + TCVGH); 215 patients (156 Fabry, 59 HCM); external test: 31 patients (20 Fabry, 11 HCM) | Fabry cardiomyopathy vs. HCM | DL—3D ResNet18 CNN | Non-contrast short-axis cine stacks (standardized to 5 slices, 20 frames; no segmentation) | Internal (TVGH): F1 = 0.846, Accuracy = 0.909, AUC = 0.914; External (TCVGH): F1 = 0.727, Accuracy = 0.806, AUC = 0.918 |
| Taleie H et al. [41] | 2023 | Echocardiography (2D TTE Radiomics) | Cross-sectional study; n = 78 thalassemia major patients | Iron overload cardiomyopathy (restrictive phenotype) | Radiomics + ML (Random Forest, SVM, Decision Tree, XGBoost) | 103 radiomic texture features extracted from LV parasternal long-axis and apical 4-chamber views | AUC 0.73 (best model, Random Forest); accuracy 0.70 |
| Eckstein J et al. [42] | 2023 | CMR (cine SSFP, 3.0 T Philips Achieva) | Retrospective single-center; 107 participants (44 controls, 45 CMR–, 18 CMR+) | Cardiac sarcoidosis | Supervised ML (RF, SVM, Logistic Regression, Voting, GBoost, XGBoost) | 36 multi-chamber volumetric and strain features (bi-atrial + bi-ventricular) extracted via CVI42 | 3-class model (CTRL vs. CMR– vs. CMR+): RF/Voting = 82% accuracy; 2-class (CTRL vs. All Sarc): 97% (RF, SVM, LR); CMR+ vs. CMR– improved to 89% with feature selection (LR) |
| Harmon DM et al. [43] | 2023 | ECG | Retrospective validation; 440 amyloid patients (AL and ATTR) + 6600 controls (1:15 ratio) | CA (AL and ATTR subtypes) | Deep neural network (AI-enhanced ECG algorithm) | Raw 12-lead ECG waveform data | AUC 0.84 (95% CI 0.82–0.86); sensitivity 64.3%, specificity 90.4%; AL AUC 0.85, ATTR AUC 0.84; best for low-voltage ECGs (AUC 0.92), reduced for LVH (0.75) and LBBB (0.76) |
| Goto S, Mahara K, Beussink-Nelson L et al. [44] | 2021 | ECG and Echocardiography | Multicentre retrospective (5 US + Japan centers); >20,000 ECGs; >10,000 echocardiograms | CA (ATTR, AL) | CNN (2D for ECG; 3D-CNN for echo) | ECG waveforms; apical 4-chamber echo videos | ECG model: AUC 0.91 (BWH), 0.85 (MGH), 0.86 (UCSF); detection up to 365 days pre-diagnosis (AUC ≈ 0.88). Echo model: AUC 0.96 (BWH), 0.91–1.00 across external sites; combined pipeline PPV ≈ 75% vs. 33% with echo alone. |
| Huda A et al. [45] | 2021 | EHR/Medical Claims | Derivation: n = 1071 ATTRwt-CM, 1071 controls; Validation: 3 national cohorts (n = 9412 cases + 9412 controls) + 1 EHR-based cohort (261 cases, 39,393 controls) | Wild-type transthyretin amyloid cardiomyopathy (ATTRwt-CM) | Random Forest (compared with logistic regression, XGBoost) | Administrative medical claims + structured EHR data (ICD-9/10 codes, demographics, comorbidities) | Derivation: AUC 0.93 (accuracy 87%) Optum validation: AUC 0.95 EHR validation: AUC 0.80 |
| Grogan et al. [46] | 2021 | ECG | Retrospective cohort; 2541 CA patients (light-chain or transthyretin) + 2454 controls | CA (ATTR and AL) | Deep neural network | Standard 12-lead ECG data (single-lead and 6-lead subsets tested) | AUC 0.91 (95% CI 0.90–0.93); PPV 0.86; detected 84% of CA cases at cutoff 0.485; predicted CA > 6 months pre-diagnosis in 59%; best single-lead model (V5) AUC 0.86, 6-lead model AUC 0.90 |
| Schofield R, Ganeshan B, Fontana M, Moon JC [47] | 2019 | CMR (bSSFP cine, 1.5 T Siemens Avanto) | Retrospective; 216 subjects (50 HCM, 52 CA, 68 AS, 15 HTN + LVH, 31 healthy controls) | LVH etiologies (HCM, CA, AS, hypertensive LVH) | Texture analysis (TexRAD, filtration-histogram radiomics) | Mid short-axis unenhanced cine frame; whole-myocardium ROI; SSF = 3 mm filter | AUC = 0.89 (HCM vs. AS, mean −97.6 threshold; 72% sensitivity, 94% specificity); reproducibility ICC ≈ 0.85 |
| Tison GH et al. [8] | 2019 | ECG | Retrospective multicohort study; >1.1 million ECGs from >400,000 patients | Multiple cardiovascular conditions (including heart failure phenotypes—relevant to restrictive physiology) | DL (CNN with interpretable embedding model) | Raw 12-lead ECG waveforms linked to EHR data | AUC 0.93 for predicting left ventricular dysfunction (EF ≤ 35%); accurately detected HF phenotypes and other comorbidities using ECG-only input |
| Sengupta PP et al. [48] | 2016 | Echocardiography (Speckle-Tracking) | Retrospective; n = 94 (50 CP, 44 RCM + 47 controls) | RCM vs. constrictive pericarditis | Associative Memory Classifier (AMC; cognitive ML) | 15 STE + 4 conventional echo parameters (e′, E/e′, septal and posterior wall thickness) | AUC 96.2% (AMC) vs. 82.1% (e′) and 63.7% (GLS); accuracy ≈ 94% (10-fold CV) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizori, R.; Hassan, A.; Kundur, S.P.; Malik, A.; Farhan, S.; Sivalokanathan, S. Artificial Intelligence in Restrictive Cardiomyopathy: Current Diagnostic Applications and Future Directions. Hearts 2025, 6, 29. https://doi.org/10.3390/hearts6040029
Mizori R, Hassan A, Kundur SP, Malik A, Farhan S, Sivalokanathan S. Artificial Intelligence in Restrictive Cardiomyopathy: Current Diagnostic Applications and Future Directions. Hearts. 2025; 6(4):29. https://doi.org/10.3390/hearts6040029
Chicago/Turabian StyleMizori, Rasi, Ali Hassan, Sukruth Pradeep Kundur, Ali Malik, Serdar Farhan, and Sanjay Sivalokanathan. 2025. "Artificial Intelligence in Restrictive Cardiomyopathy: Current Diagnostic Applications and Future Directions" Hearts 6, no. 4: 29. https://doi.org/10.3390/hearts6040029
APA StyleMizori, R., Hassan, A., Kundur, S. P., Malik, A., Farhan, S., & Sivalokanathan, S. (2025). Artificial Intelligence in Restrictive Cardiomyopathy: Current Diagnostic Applications and Future Directions. Hearts, 6(4), 29. https://doi.org/10.3390/hearts6040029

