The Evolution and Complications of Long-Term Mechanical Circulatory Support Devices
Abstract
:1. Introduction
The Evolution of Device Design
Gen. | Device | Manufacturer | Type | Flow | Mechanism |
---|---|---|---|---|---|
First | Novacor | World Heart Inc. (Oakland, CA, USA) | VAD | Pulsatile | The Novacor is a VAD with a polyurethane pumping chamber, pusher plates and fitted valves. It has the shortest blood flow path to reduce the risk of thromboembolism, with a blood flow of up to 10 L/min [15,16]. |
First | HeartMate (I) HVE | Thoratec (Pleasanton, CA, USA) | VAD | Pulsatile | The HeartMate XVE is a pulsatile VAD with an electric motor. It operates a pusher plate that expands and decompresses a central chamber to control pumping and blood flow. It contains bioprosthetic unidirectional valves to prevent backflow [17]. |
First | CardioWest | Syncardia Systems (Tucson, AZ, USA) | TAH | Pulsatile | The CardioWest is a total artificial heart (TAH) with an external driver. It is a positive displacement pump that delivers pneumatic pulses into the ventricle chambers using unidirectional valves. It has a cardiac output of up to 9 L/min [18]. |
Second | Jarvik 2000 | Jarvik Heart Inc. (New York, NY, USA) | VAD | Continuous (Axial) | The Jarvik 2000 is a VAD that contains a single rotating vaned impeller, which accelerates blood through a central rotor with ceramic bearings. It is powered by a small motor [19]. |
Second | HeartMate II | Thoratec (Pleasanton, CA, USA) | VAD | Continuous (Axial) | The HMII is a VAD with a mechanical blood-contacting bearing. It contains a continuously spinning impeller along a central shaft, which draws the blood from the blades of the impeller to produce a flow of up to 10 L/min [17]. |
Second | EVAHEART | Evaheart Inc.( Sun Medical Technology Research Corporation, Nagano, Japan) | VAD | Continuous (Centrifugal) | The EVAHEART is a hydrodynamically levitated device with one journal bearing and an open-vane impeller. The blood-contacting surfaces in the device are covered in an antithrombogenic coating. The EVAHEART has a blood flow of up to 12 L/min [19]. |
Third | INCOR | Berlin Heart (Berlin, Germany) | VAD | Continuous (Axial) | The Incor is a VAD which passes blood flow through an inducer. The inducer contains blades that direct the blood to the impeller. This process is wear-free due to contactless magnetic bearing. The Incor also contains a stationary diffuser wheel to increase the pressure required for a blood flow of up to 7 L/min [20]. |
Third | VentrAssist | Ventracor Ltd. (Chatswood, NSW, Australia) | VAD | Continuous (Centrifugal) | The VentrAssist is a centrifugal device that uses non-contact impellers with hydrodynamic suspension and is coated in diamond-like carbon. It weighs 298 g and has four rotor blades. The VentrAssist is electromagnetically driven and can run up to 3000 RPM, with a blood flow of up to 10 L/min [21]. |
Third | HVAD | Medtronic (Minneapolis, MN, USA) | VAD | Continuous (Centrifugal) | The HVAD is a centrifugal device with a combination of passive magnetic levitation and hydrodynamic suspension. It does not contain any mechanical bearings. The HVAD has a blood flow of up to 10 L/min [22]. |
Third | HeartMate 3 | Abbott (Chicago, IL, USA) | VAD | Continuous (Centrifugal) | The HM3 is a centrifugal device that has intermittent speed modulation. It has magnetic levitation and wide gap spaces to reduce blood damage. It does not contain any mechanical or hydrodynamic bearings [23,24]. |
2. Complications in MCS
2.1. Patient Selection and Challenges in MCS Therapy
2.2. Strokes
2.3. Pump Thrombosis
2.4. Strategies to Overcome Pump Thrombosis
2.5. Gastrointestinal (GI) Bleeding
2.6. Risk Factors for Gastrointestinal Bleeding
3. The Financial Impact of MCS Device Complications
4. Devices in Development
Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhatnagar, P.; Wickramasinghe, K.; Williams, J.; Rayner, M.; Townsend, N. The epidemiology of cardiovascular disease in the UK 2014. Heart 2015, 101, 1182–1189. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Global epidemiology and future trends of heart failure. AME Med. J. 2020, 5, 15. [Google Scholar] [CrossRef]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.; Coats, A.J. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287, Erratum in Cardiovasc. Res. 2023, 119, 1453. [Google Scholar] [CrossRef]
- Hsich, E.; Singh, T.P.; Cherikh, W.S.; Harhay, M.O.; Hayes, D.; Perch, M.; Potena, L.; Sadavarte, A.; Lindblad, K.; Zuckermann, A.; et al. The International thoracic organ transplant registry of the international society for heart and lung transplantation: Thirty-ninth adult heart transplantation report-2022; focus on transplant for restrictive heart disease. J. Heart Lung Transplant. 2022, 41, 1366–1375. [Google Scholar] [CrossRef]
- Williams, M.L.; Trivedi, J.R.; McCants, K.C.; Prabhu, S.D.; Birks, E.J.; Oliver, L.; Slaughter, M.S. Heart transplant vs left ventricular assist device in heart transplant-eligible patients. Ann. Thorac. Surg. 2011, 91, 1330–1333. [Google Scholar] [CrossRef]
- Statista [Internet]: Heart Transplants in the U.S. 1975–2021. Available online: https://www.statista.com/statistics/671451/heart-transplants-number-us/ (accessed on 10 October 2023).
- MacGowan, G.A.; Crossland, D.S.; Hasan, A.; Schueler, S. Considerations for patients awaiting heart transplantation-Insights from the UK experience. J. Thorac. Dis. 2015, 7, 527–531. [Google Scholar]
- Rigatelli, G.; Santini, F.; Faggian, G. Past and present of cardiocirculatory assist devices: A comprehensive critical review. J. Geriatr. Cardiol. JGC 2012, 9, 389–400. [Google Scholar] [PubMed]
- Pagani, F.D.; Miller, L.W.; Russell, S.D. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J. Am. Coll. Cardiol. 2009, 54, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Moazami, N.; Fukamachi, K.; Kobayashi, M.; Smedira, N.G.; Hoercher, K.J.; Massiello, A.; Lee, S.; Horvath, D.J.; Starling, R.C. Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice. J. Heart Lung Transplant. 2013, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mankad, A.K.; Tang, D.G.; Clark, W.B.; Flattery, M.; Harton, S.; Katlaps, G.J.; Stribling, W.K.; Cooke, R.H.; Hess, M.L.; Kasirajan, V.; et al. Persistent anemia after implantation of the total artificial heart. J. Card. Fail. 2012, 18, 433–438. [Google Scholar] [CrossRef]
- Narang, N.; Raikhelkar, J.; Sayer, G.; Uriel, N. Hemodynamic Pump-Patient Interactions and Left Ventricular Assist Device Imaging. Cardiol. Clin. 2018, 36, 561–569. [Google Scholar] [CrossRef]
- Kim, J.H.; Cowger, J.A.; Shah, P. The Evolution of Mechanical Circulatory Support. Cardiol. Clin. 2018, 36, 443–449. [Google Scholar] [CrossRef]
- Vetter, H.O.; Kaulbach, H.G.; Schmitz, C.; Forst, A.; Überfuhr, P.; Kreuzer, E.; Pfeiffer, M.; Brenner, P.; Dewald, O.; Reichart, B. Experience With the Novacor Left Ventricular Assist System as a Bridge to Cardiac Transplantation, Including the New Wearable System. J. Thorac. Cardiovasc. Surg. 1995, 109, 74–80. [Google Scholar] [CrossRef]
- Loebe, M.; Koster, A.; Sänger, S.; Potapov, E.V.; Kuppe, H.; Noon, G.P.; Hetzer, R. Inflammatory response after implantation of a left ventricular assist device: Comparison between the axial flow MicroMed DeBakey VAD and the pulsatile Novacor device. ASAIO J. 2001, 47, 272–274. [Google Scholar] [CrossRef]
- Wilson, S.R.; Givertz, M.M.; Stewart, G.C.; Mudge, G.H. Ventricular assist devices the challenges of outpatient management. J. Am. Coll. Cardiol. 2009, 54, 1647–1659. [Google Scholar] [CrossRef]
- Imamura, T.; Narang, N.; Kim, G.; Nitta, D.; Fujino, T.; Nguyen, A.; Grinstein, J.; Rodgers, D.; Ota, T.; Jeevanandam, V.; et al. Aortic Insufficiency during HeartMate 3 Left Ventricular Assist Device Support. J. Card. Fail. 2020, 26, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Kihara, S.; Akimoto, T.; Tagusari, O.; Kawai, A.; Umezu, M.; Tomioka, J.; Kormos, R.L.; Griffith, B.P.; Kurosawa, H. EVAHEART: An implantable centrifugal blood pump for long-term circulatory support. Jpn. J. Thorac. Cardiovasc. Surg. 2002, 50, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.; Tjan, T.D.; Etz, C.; Schmidt, C.; Wenzelburger, F.; Wilhelm, M.; Rothenburger, M.; Drees, G.; Scheld, H.H. First clinical experience with the Incor left ventricular assist device. J. Heart Lung Transplant. 2005, 24, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Esmore, D.; Spratt, P.; Larbalestier, R.; Tsui, S.; Fiane, A.; Ruygrok, P.; Meyers, D.; Woodard, J. VentrAssist left ventricular assist device: Clinical trial results and Clinical Development Plan update. Eur. J. Cardiothorac. Surg. 2007, 32, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, D.; Haberl, T.; Riebandt, J.; Simon, P.; Laufer, G.; Zimpfer, D. Ventricular Assist Devices—Evolution of Surgical Heart Failure Treatment. Eur. Cardiol. 2014, 9, 54–58. [Google Scholar] [CrossRef]
- Hanke, J.S.; Rojas, S.V.; Dogan, G.; Feldmann, C.; Beckmann, E.; Deniz, E.; Wiegmann, B.; Michaelis, J.-E.; Napp, L.C.; Berliner, D.; et al. First series of left ventricular assist device exchanges to HeartMate 3. Eur. J. Cardiothorac. Surg. 2017, 51, 887–892. [Google Scholar] [CrossRef]
- Alvarez, J.; Rao, V. HeartMate 3-a “Step” in the right direction. J. Thorac. Dis. 2017, 9, E457–E460. [Google Scholar] [CrossRef]
- Melendo-Viu, M.; Dobarro, D.; Roubin, S.R.; Pernas, C.L.; Cordón, C.M.; Lamas, M.V.; Esteban, M.P.; Martínez, M.V.; Abu Assi, E.; Romero, R.P.; et al. Left Ventricular Assist Device as a Destination Therapy: Current Situation and the Importance of Patient Selection. Life 2023, 13, 1065. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Goldstein, D.J.; Uriel, N.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Ewald, G.A.; et al. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure. N. Engl. J. Med. 2018, 378, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Molina, E.J.; Shah, P.; Kiernan, M.S.; Cornwell, W.K.; Copeland, H.; Takeda, K.; Fernandez, F.G.; Badhwar, V.; Habib, R.H.; Jacobs, J.P.; et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann. Thorac. Surg. 2021, 111, 778–792. [Google Scholar] [CrossRef] [PubMed]
- Strauch, J.T.; Spielvogel, D.; Haldenwang, P.L.; Correa, R.K.; Richard, A.D.; Seissler, P.E.; Baran, D.A.; Gass, A.L.; Lansman, S.L. Recent improvements in outcome with the Novacor left ventricular assist device. J. Heart Lung Transplant. 2003, 22, 674–680. [Google Scholar] [CrossRef]
- El-Banayosy, A.; Arusoglu, L.; Kizner, L.; Tenderich, G.; Minami, K.; Inoue, K.; Körfer, R. Novacor left ventricular assist system versus Heartmate vented electric left ventricular assist system as a long-term mechanical circulatory support device in bridging patients: A prospective study. J. Thorac. Cardiovasc. Surg. 2000, 119, 581–587. [Google Scholar] [CrossRef]
- Crow, S.; John, R.; Boyle, A.; Shumway, S.; Liao, K.; Colvin-Adams, M.; Toninato, C.; Missov, E.; Pritzker, M.; Martin, C.; et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J. Thorac. Cardiovasc. Surg. 2009, 137, 208–215. [Google Scholar] [CrossRef]
- Slaughter, M.S.; Rogers, J.G.; Milano, C.A.; Russell, S.D.; Conte, J.V.; Feldman, D.; Sun, B.; Tatooles, A.J.; Delgado, R.M.; Long, J.W.; et al. Advanced Heart Failure Treated with Continuous-Flow Left Ventricular Assist Device. N. Eng. J. Med. 2009, 361, 2241–2251. [Google Scholar] [CrossRef]
- Copeland, J. Results with an anticoagulation protocol in 99 SynCardia total artificial heart recipients. ASAIO J. 2013, 59, 216–220. [Google Scholar] [CrossRef]
- El-Banayosy, A.; Arusoglu, L.; Morshuis, M.; Kizner, L.; Tenderich, G.; Sarnowski, P.; Milting, H.; Koerfer, R. CardioWest total artificial heart: Bad Oeynhausen experience. Ann. Thorac. Surg. 2005, 80, 548–552. [Google Scholar] [CrossRef]
- Kohno, H.; Matsumiya, G.; Sawa, Y.; Ono, M.; Saiki, Y.; Shiose, A.; Yamazaki, K.; Matsui, Y.; Niinami, H.; Matsuda, H.; et al. The Jarvik 2000 left ventricular assist device as a bridge to transplantation: Japanese Registry for Mechanically Assisted Circulatory Support. J. Heart Lung Transplant. 2017, 37, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Letsou, G.V.; Shah, N.; Gregoric, I.D.; Myers, T.J.; Delgado, R.; Frazier, O. Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. J. Heart. Lung. Transplant. 2005, 24, 105–109. [Google Scholar] [CrossRef]
- Rogers, J.G.; Pagani, F.D.; Tatooles, A.J.; Bhat, G.; Slaughter, M.S.; Birks, E.J.; Boyce, S.W.; Najjar, S.S.; Jeevanandam, V.; Anderson, A.S.; et al. Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure. N. Engl. J. Med. 2017, 376, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device—Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Malick, A.; Ning, Y.; Kurlansky, P.A.; Melehy, A.; Yuzefpolskaya, M.; Colombo, P.C.; Sayer, G.; Uriel, N.; Naka, Y.; Takeda, K. Development of De Novo Aortic Insufficiency in Patients with HeartMate 3. Ann. Thorac. Surg. 2021, 114, 450–456. [Google Scholar] [CrossRef]
- Morgan, J.A.; Paone, G.; Nemeh, H.W.; Henry, S.E.; Patel, R.; Vavra, J.; Williams, C.T.; Lanfear, D.E.; Tita, C.; Brewer, R.J. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J. Heart Lung Transplant. 2012, 31, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Demirozu, Z.T.; Radovancevic, R.; Hochman, L.F.; Gregoric, I.D.; Letsou, G.V.; Kar, B.; Bogaev, R.C.; Frazier, O. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J. Heart Lung Transplant. 2011, 30, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Yamazaki, K.; Nishinaka, T.; Ichihara, Y.; Ono, M.; Kyo, S.; Nishimura, T.; Nakatani, T.; Toda, K.; Sawa, Y.; et al. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART: A Japanese multicenter study using J-MACS. J. Heart Lung Transplant. 2014, 33, 599–608. [Google Scholar] [CrossRef]
- Chen, H.B.; Wang, X.Q.; Du, J.; Shi, J.; Ji, B.Y.; Shi, L.; Shi, Y.S.; Zhou, X.T.; Yang, X.H.; Hu, S.S. Long-term outcome of EVAHEART I implantable ventricular assist device for the treatment of end stage heart failure: Clinical 3-year follow-up results of 15 cases. Zhonghua Xin Xue Guan Bing Za Zhi 2023, 51, 393–399. [Google Scholar] [PubMed]
- Iacovoni, A.; Centofanti, P.; Attisani, M.; Verde, A.; Terzi, A.; Senni, M.; Maiani, M.; Baronetto, A.; Livi, U.; Frigerio, M.; et al. Low incidence of gastrointestinal bleeding and pump thrombosis in patients receiving the INCOR LVAD system in the long-term follow-up. Int. J. Artif. Organs. 2015, 38, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Esmore, D.; Kaye, D.; Spratt, P.; Larbalestier, R.; Ruygrok, P.; Tsui, S.; Meyers, D.; Fiane, A.E.; Woodard, J. A prospective, multicenter trial of the VentrAssist left ventricular assist device for bridge to transplant: Safety and efficacy. J. Heart Lung Transplant. 2008, 27, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Strueber, M.; O’driscoll, G.; Jansz, P.; Khaghani, A.; Levy, W.C.; Wieselthaler, G.M. Multicenter evaluation of an intrapericardial left ventricular assist system. J. Am. Coll. Cardiol. 2011, 57, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.S.; Slaughter, M.S.; Pagani, F.D.; Starling, R.C.; McGee, E.C.; Eckman, P.; Tatooles, A.J.; Moazami, N.; Kormos, R.L.; Hathaway, D.R.; et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J. Heart Lung Transplant. 2014, 33, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, C.R.; Restle, D.J.; Zhang, D.M.; Acker, M.A.; Atluri, P. Pathologic von Willebrand factor degradation with a left ventricular assist device occurs via two distinct mechanisms: Mechanical demolition and enzymatic cleavage. J. Thorac. Cardiovasc. Surg. 2015, 149, 281–289. [Google Scholar] [CrossRef]
- Gustafsson, F.; Shaw, S.; Lavee, J.; Saeed, D.; Pya, Y.; Krabatsch, T.; Schmitto, J.; Morshuis, M.; Chuang, J.; Damme, L.; et al. Six-month outcomes after treatment of advanced heart failure with a full magnetically levitated continuous flow left ventricular assist device: Report from the ELEVATE registry. Eur. Heart J. 2018, 39, 3454–3460. [Google Scholar] [CrossRef]
- Colombo, P.C.; Mehra, M.R.; Goldstein, D.J.; Estep, J.D.; Salerno, C.; Jorde, U.P.; Cowger, J.A.; Cleveland Jr, J.C.; Uriel, N.; Sayer, G.; et al. Comprehensive Analysis of Stroke in the Long-Term Cohort of the MOMENTUM 3 Study. Circulation 2019, 139, 155–168. [Google Scholar] [CrossRef]
- Ojaghihaghighi, S.; Vahdati, S.S.; Mikaeilpour, A.; Ramouz, A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J. Emerg. Med. 2017, 8, 34–38. [Google Scholar] [CrossRef]
- Bartoli, C.R.; Kang, J.; Restle, D.J.; Zhang, D.M.; Shabahang, C.; Acker, M.A.; Atluri, P. Inhibition of ADAMTS-13 by Doxycycline Reduces von Willebrand Factor Degradation During Supraphysiological Shear Stress: Therapeutic Implications for Left Ventricular Assist Device-Associated Bleeding. JACC Heart Fail. 2015, 3, 860–869. [Google Scholar] [CrossRef]
- Stulak, J.M.; Lee, D.; Haft, J.W.; Romano, M.A.; Cowger, J.A.; Park, S.J.; Aaronson, K.D.; Pagani, F.D. Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device. J. Heart Lung Transplant. 2014, 33, 60–64. [Google Scholar] [CrossRef]
- Van der Hulle, T.; Kooiman, J.; Den Exter, P.L.; Dekkers, O.M.; Klok, F.A.; Huisman, M.V. Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: A systematic review and meta-analysis. J. Thromb. Haemost. 2014, 12, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mahr, C. Anticoagulation in the HeartMate 3 Left Ventricular Assist Device: Are We Finally Moving the Needle? ASAIO J. 2022, 68, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Van de Werf, F.; Brueckmann, M.; Connolly, S.J.; Friedman, J.; Granger, C.B.; Härtter, S.; Harper, R.; Kappetein, A.P.; Lehr, T.; Mack, M.J.; et al. A comparison of dabigatran etexilate with warfarin in patients with mechanical heart valves: THE Randomized, phase II study to evaluate the safety and pharmacokinetics of oral dabigatran etexilate in patients after heart valve replacement (RE-ALIGN). Am. Heart J. 2012, 163, 931–937.e1. [Google Scholar] [CrossRef] [PubMed]
- Bogaev, R.C.; Pamboukian, S.V.; Moore, S.A.; Chen, L.; John, R.; Boyle, A.J.; Sundareswaran, K.S.; Farrar, D.J.; Frazier, O.H.; HeartMate II Clinical Investigators. Comparison of Outcomes in Women Versus Men Using a Continuous-Flow Left Ventricular Assist Device as a Bridge to Transplantation. J. Heart Lung Transplant. 2011, 30, 515–522. [Google Scholar] [CrossRef]
- Wilson, M.E. Stroke: Understanding the differences between males and females. Pflügers Arch. Eur. J. Physiol. 2013, 465, 595–600. [Google Scholar] [CrossRef]
- Tchantchaleishvili, V.; Sagebin, F.; Ross, R.E.; Hallinan, W.; Schwarz, K.Q.; Massey, H.T. Evaluation and treatment of pump thrombosis and hemolysis. Ann. Cardiothorac. Surg. 2014, 3, 490–495. [Google Scholar]
- FDA [Internet]. Available online: https://www.fda.gov/medical-devices/medical-device-recalls/medtronic-stops-distribution-and-sale-heartware-hvad-system-due-risk-neurological-adverse-events (accessed on 10 October 2023).
- Kassi, M.; Agrawal, T.; Xu, J.; Marcos-Abdala, H.G.; Araujo-Gutierrez, R.; Macgillivray, T.; Suarez, E.E.; Yousefzai, R.; Fida, N.; Kim, J.H.; et al. Outflow cannula alignment in continuous flow left ventricular devices is associated with stroke. Int. J. Artif. Organs 2023, 46, 226–234. [Google Scholar] [CrossRef]
- Koliopoulou, A.; McKellar, S.H.; Rondina, M.; Selzman, C.H. Bleeding and thrombosis in chronic ventricular assist device therapy: Focus on platelets. Curr. Opin. Cardiol. 2016, 31, 299–307. [Google Scholar] [CrossRef]
- Maltais, S.; Kilic, A.; Nathan, S.; Keebler, M.; Emani, S.; Ransom, J.; Katz, J.N.; Sheridan, B.; Brieke, A.; Egnaczyk, G.; et al. PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management: The PREVENT multi-center study. J. Heart Lung Transplant. 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Uriel, N.; Han, J.; Morrison, K.A.; Nahumi, N.; Yuzefpolskaya, M.; Garan, A.R.; Duong, J.; Colombo, P.C.; Takayama, H.; Thomas, S.; et al. Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: A multifactorial phenomenon. J. Heart Lung Transplant. 2014, 33, 51–59. [Google Scholar] [CrossRef]
- Katz, J.N.; Adamson, R.M.; John, R.; Tatooles, A.; Sundareswaran, K.; Kallel, F.; Farrar, D.J.; Jorde, U.P. Safety of reduced anti-thrombotic strategies in HeartMate II patients: A one-year analysis of the US-TRACE Study. J. Heart Lung Transplant. 2015, 34, 1542–1548. [Google Scholar] [CrossRef]
- Netuka, I.; Litzler, P.-Y.; Berchtold-Herz, M.; Flecher, E.; Zimpfer, D.; Damme, L.; Sundareswaran, K.S.; Farrar, D.J.; Schmitto, J.D. Outcomes in HeartMate II Patients With No Antiplatelet Therapy: 2-Year Results From the European TRACE Study. Ann. Thorac. Surg. 2017, 103, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Ranasinghe, A.; Chue, C.; Mascaro, J. Two-year outcome of warfarin monotherapy in HeartMate 3 left ventricular assist device: A single-center experience. J. Heart Lung Transplant. 2020, 39, 1149–1151. [Google Scholar] [CrossRef]
- Consolo, F.; Raimondi Lucchetti, M.; Tramontin, C.; Lapenna, E.; Pappalardo, F. Do we need aspirin in HeartMate 3 patients? Eur. J. Heart Fail. 2019, 21, 815–817. [Google Scholar] [CrossRef]
- Whitlock, E.P.; Burda, B.U.; Williams, S.B.; Guirguis-Blake, J.M.; Evans, C.V. Bleeding Risks With Aspirin Use for Primary Prevention in Adults: A Systematic Review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2016, 164, 826–835. [Google Scholar] [CrossRef]
- Mehra, M.R.; Crandall, D.L.; Gustafsson, F.; Jorde, U.P.; Katz, J.N.; Netuka, I.; Uriel, N.; Connors, J.M.; Sood, P.; Heatley, G.; et al. Aspirin and left ventricular assist devices: Rationale and design for the international randomized, placebo-controlled, non-inferiority ARIES HM3 trial. Eur. J. Heart Fail. 2021, 23, 1226–1237. [Google Scholar] [CrossRef]
- Mehra, M.R.; Netuka, I.; Uriel, N.; Katz, J.N.; Pagani, F.D.; Jorde, U.P.; Gustafsson, F.; Connors, J.M.; Ivak, P.; Cowger, J.; et al. Aspirin and Hemocompatibility Events With a Left Ventricular Assist Device in Advanced Heart Failure: The ARIES-HM3 Randomized Clinical Trial. JAMA 2023, 330, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.; Dimitrov, K.; Riebandt, J.; Wiedemann, D.; Laufer, G.; Schima, H.; Moscato, F.; Brown, M.C.; Kadrolkar, A.; Stadler, R.W.; et al. Validation of Intrinsic Left Ventricular Assist Device Data Tracking Algorithm for Early Recognition of Centrifugal Flow Pump Thrombosis. Life 2022, 12, 563. [Google Scholar] [CrossRef] [PubMed]
- Aliseda, A.; Chivukula, V.K.; Mcgah, P.; Prisco, A.R.; Beckman, J.A.; Garcia, G.J.M.; Mokadam, N.A.; Mahr, C. LVAD Outflow Graft Angle and Thrombosis Risk. ASAIO J. 2017, 63, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Pant, R.; Kumar, S.; Sharma, P.; Gallagher, C.; Tatooles, A.J.; Pappas, P.S.; Bhat, G. Incidence and management of gastrointestinal bleeding with continuous flow assist devices. Ann. Thorac. Surg. 2012, 93, 1534–1540. [Google Scholar] [CrossRef]
- Stern, D.R.; Kazam, J.; Edwards, P.; Maybaum, S.; Bello, R.A.; D’alessandro, D.A.; Goldstein, D.J. Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J. Cardiac. Surg. 2010, 25, 352–356. [Google Scholar] [CrossRef]
- Wever-Pinzon, O.; Selzman, C.H.; Drakos, S.G.; Saidi, A.; Stoddard, G.J.; Gilbert, E.M.; Labedi, M.; Reid, B.B.; Davis, E.S.; Kfoury, A.G.; et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ. Heart Fail. 2013, 6, 517–526. [Google Scholar] [CrossRef]
- Akhter, S.A.; Badami, A.; Murray, M.; Kohmoto, T.; Lozonschi, L.; Osaki, S.; Lushaj, E.B. Hospital Readmissions After Continuous-Flow Left Ventricular Assist Device Implantation: Incidence, Causes, and Cost Analysis. Ann. Thorac. Surg. 2015, 100, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Crow, S.; Chen, D.; Milano, C.; Thomas, W.; Joyce, L.; Piacentino, V., III; Sharma, R.; Wu, J.; Arepally, G.; Bowles, D.; et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann. Thorac. Surg. 2010, 90, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, T.W.; Weeks, P.A.; Patel, C.J.; Jezovnik, M.K.; Gulbis, B.; Nathan, S.S.; Jumean, M.F.; Radovancevic, R.; Kar, B.; Gregoric, I.D. Risk of pump thrombosis and stroke in patients with continuous-flow left ventricular assist devices and gastrointestinal bleeding. Artif. Organs 2020, 44, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Elzeneini, M.; Mahmoud, A.; Elsayed, A.H.; Taha, Y.; Meece, L.E.; Al-Ani, M.; Jeng, E.I.; Arnaoutakis, G.J.; Vilaro, J.R.; Parker, A.M.; et al. Predictors of perioperative bleeding in left ventricular assist device implantation. AHJ Plus Cardiol. Res. Pract. 2021, 2, 100006. [Google Scholar] [CrossRef]
- Kim, G.; Sayer, G.; Ransom, J.; Keebler, M.; Katz, J.; Kilic, A.; Lindenfeld, J.; Egnaczyk, G.; Shah, P.; Brieke, A.; et al. Association of Angiopoetin-2 and TNF-α With Bleeding During Left Ventricular Assist Device Support: Analysis From the PREVENT Biorepository. ASAIO J. 2023, 69, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Jeske, W.; Ransom, J.; Katz, J.N.; Kilic, A.; Lindenfeld, J.; Egnaczyk, G.; Shah, P.; Brieke, A.; Uriel, N.; Crandall, D.; et al. Enhanced Thrombin Formation in Patients with Ventricular Assist Devices Experiencing Bleeding: Insights from the Multicenter PREVENT Study. ASAIO J. 2023, 69, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Eckman, P.; John, R. Bleeding and Thrombosis in Patients with Continuous-Flow Ventricular Assist Devices. Circulation 2012, 125, 3038–3047. [Google Scholar] [CrossRef]
- Aslan, J.E.; Itakura, A.; Gertz, J.M.; McCarty, O.J. Platelet shape change and spreading. Methods Mol. Biol. 2012, 788, 91–100. [Google Scholar]
- Sheriff, J.; Bluestein, D.; Girdhar, G.; Jesty, J. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 2010, 38, 1442–1450. [Google Scholar] [CrossRef]
- Klovaite, J.; Gustafsson, F.; Mortensen, S.A.; Sander, K.; Nielsen, L.B. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J. Am. Coll. Cardiol. 2009, 53, 2162–2167. [Google Scholar] [CrossRef]
- Steinlechner, B.; Dworschak, M.; Birkenberg, B.; Duris, M.; Zeidler, P.; Fischer, H.; Milosevic, L.; Wieselthaler, G.; Wolner, E.; Quehenberger, P.; et al. Platelet dysfunction in outpatients with left ventricular assist devices. Ann. Thorac. Surg. 2009, 87, 131–137. [Google Scholar] [CrossRef]
- Vincent, F.; Rauch, A.; Loobuyck, V.; Robin, E.; Nix, C.; Vincentelli, A.; Smadja, D.M.; Leprince, P.; Amour, J.; Lemesle, G.; et al. Arterial Pulsatility and Circulating von Willebrand Factor in Patients on Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2018, 71, 2106–2118. [Google Scholar] [CrossRef]
- Nicholson, C.; Paz, J.C. Total artificial heart and physical therapy management. Cardiopulm. Phys. Ther. J. 2010, 21, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Uriel, N.; Pak, S.-W.; Jorde, U.P.; Jude, B.; Susen, S.; Vincentelli, A.; Ennezat, P.-V.; Cappleman, S.; Naka, Y.; Mancini, D. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J. Am. Coll. Cardiol. 2010, 56, 1207–1213. [Google Scholar] [CrossRef]
- Nakano, T.; Tominaga, R.; Nagano, I.; Okabe, H.; Yasui, H.; Koning, N.J.; Vonk, A.B.A.; van Barneveld, L.J.; Beishuizen, A.; Atasever, B.; et al. Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1098–H1104. [Google Scholar] [CrossRef] [PubMed]
- Mahr, C.; McGee, E.J.; Cheung, A.; Mokadam, N.A.; Strueber, M.; Slaughter, M.S.; Danter, M.R.; Levy, W.C.; Cheng, R.K.; Beckman, J.A.; et al. Cost-Effectiveness of Thoracotomy Approach for the Implantation of a Centrifugal Left Ventricular Assist Device. ASAIO J. 2020, 66, 855–861. [Google Scholar] [CrossRef]
- Alba, A.C.; Alba, L.F.; Delgado, D.H.; Rao, V.; Ross, H.J.; Goeree, R. Cost-effectiveness of ventricular assist device therapy as a bridge to transplantation compared with nonbridged cardiac recipients. Circulation 2013, 127, 2424–2435. [Google Scholar] [CrossRef] [PubMed]
- Schueler, S.; Silvestry, S.C.; Cotts, W.G.; Slaughter, M.S.; Levy, W.C.; Cheng, R.K.; Beckman, J.A.; Villinger, J.; Ismyrloglou, E.; Tsintzos, S.I.; et al. Cost-effectiveness of left ventricular assist devices as destination therapy in the United Kingdom. ESC Heart Fail. 2021, 8, 3049–3057. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.R.; Slaughter, M.S.; Ahmed, M.M.; Bartoli, C.R.; Dhingra, R.; Egnaczyk, G.F.; Gulati, S.K.; Kiernan, M.S.; Mahr, C.; Meyer, D.M.; et al. COMPETENCE Trial: The EVAHEART 2 continuous flow left ventricular assist device. J. Heart Lung Transplant. 2023, 42, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Motomura, T.; Tuzun, E.; Yamazaki, K.; Tatsumi, E.; Benkowski, R.; Yamazaki, S. Preclinical Evaluation of the EVAHEART 2 Centrifugal Left Ventricular Assist Device in Bovines. ASAIO J. 2019, 65, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Martinolli, M.; Cornat, F.; Vergara, C. Computational Fluid-Structure Interaction Study of a New Wave Membrane Blood Pump. Cardiovasc. Eng. Technol. 2022, 13, 373–392. [Google Scholar] [CrossRef] [PubMed]
- RealHeart. The Artificial Heart. Available online: https://www.corwave.com/press/ (accessed on 12 November 2023).
- CorWave. Press Releases. Available online: https://realheart.se/the-artificiel-heart/ (accessed on 12 November 2023).
- Genovese, E.A.; Dew, M.A.; Teuteberg, J.J.; Simon, M.A.; Kay, J.; Siegenthaler, M.P.; Bhama, J.K.; Bermudez, C.A.; Lockard, K.L.; Winowich, S.; et al. Incidence and patterns of adverse event onset during the first 60 days after ventricular assist device implantation. Ann. Thorac. Surg. 2009, 88, 1162–1170. [Google Scholar] [CrossRef]
- Ramu, B.; Cogswell, R.; Ravichandran, A.K.; Cleveland, J.; Mehra, M.R.; Goldstein, D.; Uriel, N.; Dirckx, N.; Ahmed, S.; Yuzefpolskaya, M. Clinical Outcomes with a Fully Magnetically Levitated Left Ventricular Assist Device among Women and Men. JACC Heart Fail. 2023, 11, 1692–1704. [Google Scholar] [CrossRef]
- Lucke, L.; Bluvshtein, V. Safety considerations for wireless delivery of continuous power to implanted medical devices. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014, 2014, 286–289. [Google Scholar]
- Nozdrzykowski, M.; Bauer, J.M.; Schulz, U.; Jawad, K.; Bireta, C.; Eifert, S.; Sandri, M.; Jozwiak-Nozdrzykowska, J.; Borger, M.A.; Saeed, D. Stroke and pump thrombosis following left ventricular assist device implantation: The impact of the implantation technique. Front. Cardiovasc. Med. 2023, 10, 974527. [Google Scholar] [CrossRef]
Device Name | Haemorrhagic Stroke | Ischaemic Stroke | Pump Thrombosis | GI Bleeding | References |
---|---|---|---|---|---|
Novacor | 9.0% | 15.0% | N/A | 20.0% | [28,29] |
HeartMate (I) HVE | 8.0% | 7.0% | 0% | 6.5% | [30,31] |
CardioWest | 0.0–2.3% | 2.0–2.3% | N/A | 4.0% | [32,33] |
Jarvik 2000 | Overall stroke rate: 20.5% | 1.2% | 10.8–14% | [34,35] | |
HeartMate II | 4.0–9.3% | 8.1–13.4% | 10.7–13.9% | 19–34.2% | [26,36,37,38,39,40] |
EVAHEART | 6.6–13.5% | 17.7–20.0% | 1.0% | 0.0% | [41,42] |
INCOR | 14.3% | 2.4% | 0.0% | 0.0% | [43] |
VentrAssist | 8% | 16% | 15% | 12% | [21,44] |
HVAD | 8–14.9% | 4.9–17.6% | 6.4–14% | 35.1 | [36,45,46] |
HeartMate 3 | 1.5–4.2% | 3.90–6.3% | 0–1.4% | 6.1–24.5% | [26,37,47,48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sargent, C.R.; Ali, S.; Kanamarlapudi, V. The Evolution and Complications of Long-Term Mechanical Circulatory Support Devices. Hearts 2024, 5, 105-121. https://doi.org/10.3390/hearts5010008
Sargent CR, Ali S, Kanamarlapudi V. The Evolution and Complications of Long-Term Mechanical Circulatory Support Devices. Hearts. 2024; 5(1):105-121. https://doi.org/10.3390/hearts5010008
Chicago/Turabian StyleSargent, Christian R., Sabrina Ali, and Venkateswarlu Kanamarlapudi. 2024. "The Evolution and Complications of Long-Term Mechanical Circulatory Support Devices" Hearts 5, no. 1: 105-121. https://doi.org/10.3390/hearts5010008
APA StyleSargent, C. R., Ali, S., & Kanamarlapudi, V. (2024). The Evolution and Complications of Long-Term Mechanical Circulatory Support Devices. Hearts, 5(1), 105-121. https://doi.org/10.3390/hearts5010008