Durable Continuous-Flow Mechanical Circulatory Support: State of the Art
Abstract
:1. Introduction
2. The History, Clinical Requirement for, and Technology of VADs
2.1. Pumps
2.2. Axial Flow
2.3. HeartMate II
2.4. Radial Flow
2.5. HeartWare HVAD
2.6. HeartMate 3
3. Surgical Issues
4. Outcomes
4.1. Survival
4.2. Adverse Events
4.2.1. Bleeding
4.2.2. Neurological Events
4.2.3. Infection
4.2.4. Pump Thrombosis
4.2.5. Right Heart Failure
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirklin, J.K.; Naftel, D.C.; Pagani, F.D.; Kormos, R.L.; Stevenson, L.W.; Blume, E.D.; Myers, S.L.; Miller, M.A.; Baldwin, J.T.; Young, J.B. Seventh INTERMACS annual report: 15,000 patients and counting. J. Hear. Lung Transplant. 2015, 34, 1495–1504. [Google Scholar] [CrossRef]
- De Bya, T.M.M.H.; Schweigerb, M.; Waheedc, H.; Bergerd, F.; Hublerb, M.; Ozbarane, M.; Maruszewskif, B.; Napoleoneg, C.P.; Loforteh, A.; Meyns, B.; et al. The European Registry for Patients with Mechanical Circulatory Support (EU-ROMACS) of the European Association for Cardio-Thoracic Surgery (EACTS): Second report. Eur. J. Cardiothorac. Surg. 2018, 53, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Kirklin, J.K.; Xie, R.; Cowger, J.; de By, T.M.; Nakatani, T.; Schueler, S.; Taylor, R.; Lannon, J.; Mohacsi, P.; Gummert, J.; et al. Second annual report from the ISHLT Mechanically Assisted Circulatory Support Regis-try. J. Heart Lung Transplant. 2018, 37, 685–691. [Google Scholar] [CrossRef]
- Stulak, J.M.; Davis, M.E.; Haglund, N.; Dunlay, S.M.; Cowger, J.A.; Shah, P.; Pagani, F.D.; Aaronson, K.D.; Maltais, S. Adverse events in contemporary continuous-flow left ventricular assist devices: A multi-institutional comparison shows significant differences. J. Thorac. Cardiovasc. Surg. 2016, 151, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, D.J.; Meyns, B.; Xie, R.; Cowger, J.; Pettit, S.; Nakatani, T.; Netuka, I.; Shaw, S.; Yanase, M.; Kirklin, J.K. Third annual report from the ISHLT Mechanically Assisted Circulatory Support Regis-try: A comparison of centrifugal and axial continuous-flow left ventricular assist devices. J. Heart Lung Transplant. 2019, 38, 352–363. [Google Scholar] [CrossRef]
- Potapov, E.V.; Krabatsch, T.; Ventura, H.O.; Hetzer, R. Advances in mechanical circulatory support: Year in review. J. Hear. Lung Transplant. 2011, 30, 487–493. [Google Scholar] [CrossRef]
- Slaughter, M.S.; Rogers, J.G.; Milano, C.A.; Russell, S.D.; Conte, J.V.; Feldman, D.; Sun, B.; Tatooles, A.J.; Delgado, R.M.; Long, J.W.; et al. Advanced Heart Failure Treated with Continuous-Flow Left Ventricular Assist Device. N. Engl. J. Med. 2009, 361, 2241–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnajar, A.; Frazier, O. The State of Artificial Heart Therapy. Tex. Heart Inst. J. 2019, 46, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, R.; Kaufmann, F.; Potapov, E.V.; Krabatsch, T.; Delmo Walter, E. Rotary Blood Pumps as Long-Term Mechanical Circula-tory Support: A Review of a 15-Year Berlin Experience. Semin. Thoracic. Surg. 2016, 28, 12–23. [Google Scholar]
- Potapov, E.V.; Loforte, A.; Weng, Y.; Jurmann, M.; Pasic, M.; Drews, T.; Loebe, M.; Hennig, E.; Krabatsch, T.; Koster, A.; et al. Experience with over 1000 Implanted Ventricular Assist Devices. J. Card. Surg. 2008, 23, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Gummert, J.F.; Haverich, A.; Schmitto, J.D.; Potapov, E.; Schramm, R.; Falk, V. Permanent implantable cardiac support systems. Dtsch. Aerzteblatt Int. 2019, 116, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, D.; Haberl, T.; Riebandt, J.; Simon, P.; Laufer, G.; Zimpfer, D. Ventricular Assist Devices—Evolution of Surgical Heart Failure Treatment. Eur. Cardiol. Rev. 2014, 9, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, K.D.; Slaughter, M.S.; Miller, L.W.; McGee, E.C.; Cotts, W.G.; Acker, M.A.; Jessup, M.L.; Gregoric, I.D.; Loyalka, P.; Frazier, O.; et al. Use of an Intrapericardial, Continuous-Flow, Centrifugal Pump in Patients Awaiting Heart Transplantation. Circulation 2012, 125, 3191–3200. [Google Scholar] [CrossRef] [Green Version]
- Slaughter, M.S.; Pagani, F.D.; McGee, E.C.; Birks, E.J.; Cotts, W.G.; Gregoric, I.; Frazier, O.H.; Icenogle, T.; Najjar, S.S.; Boyce, S.W.; et al. HeartWare ventricular assist system for bridge to transplant: Combined results of the bridge to transplant and continued access protocol trial. J. Heart Lung Transplant. 2013, 32, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Strueber, M.; O’Driscoll, G.; Jansz, P.; Khaghani, A.; Levy, W.C.; Wieselthaler, G.M. Multicenter Evaluation of an Intrapericardial Left Ventricular Assist System. J. Am. Coll. Cardiol. 2011, 57, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Krabatsch, T.; Netuka, I.; Schmitto, J.D.; Zimpfer, D.; Garbade, J.; Rao, V.; Morshuis, M.; Beyersdorf, F.; Marasco, S.; Damme, L.; et al. Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure –1 year results from the Ce mark trial. J. Cardiothorac. Surg. 2017, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mehra, M.R.; Naka, Y.; Uriel, N.; Goldstein, D.J.; Cleveland, J.C.; Colombo, P.C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Jorde, U.P.; et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. N. Engl. J. Med. 2017, 376, 440–450. [Google Scholar] [CrossRef]
- Rogers, J.G.; Pagani, F.D.; Tatooles, A.J.; Bhat, G.; Slaughter, M.S.; Birks, E.J.; Boyce, S.W.; Najjar, S.S.; Jeevanandam, V.; Anderson, A.S.; et al. Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure. N. Engl. J. Med. 2017, 376, 451–460. [Google Scholar] [CrossRef]
- Schramm, R.; Zittermann, A.; Morshuis, M.; Schoenbrodt, M.; von Roessing, E.; von Dossow, V.; Koster, A.; Fox, H.; Hakim-Meibodi, K.; Gummert, J.F. Comparing short-term outcome after implantation of the HeartWare HVAD and the Abbott HeartMate 3. ESC Heart Fail 2020, 7, 908–914. [Google Scholar] [CrossRef]
- Mueller, M.; Hoermandinger, C.; Richter, G.; Mulzer, J.; Tsyganenko, D.; Krabatsch, T.; Starck, C.; Stein, J.; Schoenrath, F.; Falk, V.; et al. Retrospective 1-year outcome follow-up in 200 patients supported with HeartMate 3 and HeartWare left ventricular assist devices in a single centre. Eur. J. Cardio-Thorac. Surg. 2020, 57, 1160–1165. [Google Scholar] [CrossRef]
- Itzhaki Ben Zadok, O.; Ben-Avraham, B.; Shaul, A.; Hammer, Y.; Rubachevski, V.; Aravot, D.; Kornowski, R.; Ben-Gal, T. An 18-month comparison of clinical outcomes between continu-ous-flow left ventricular assist devices. Eur. J. Cardiothorac. Surg. 2019, 56, 1054–1061. [Google Scholar] [CrossRef]
- Miller, L.W.; Guglin, M. Patient Selection for Ventricular Assist Devices. J. Am. Coll. Cardiol. 2013, 61, 1209–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirklin, J.K.; Pagani, F.D.; Goldstein, D.J.; John, R.; Rogers, J.G.; Atluri, P.; Arabia, F.A.; Cheung, A.; Holman, W.; Hoopes, C.; et al. American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. J. Heart Lung Transplant. 2020, 39, 187–219. [Google Scholar] [CrossRef] [PubMed]
- Potapov, E.V.; Antonides, C.; Crespo-Leiro, M.G.; Combes, A.; Färber, G.; Hannan, M.M.; Kukucka, M.; De Jonge, N.; Loforte, A.; Lund, L.H.; et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur. J. Cardio-Thorac. Surg. 2019, 56, 230–270. [Google Scholar] [CrossRef] [PubMed]
- Maltais, S.; Davis, M.E.; Haglund, N. Minimally invasive and alternative approaches for long-term LVAD placement: The Van-derbilt strategy. Ann. Cardiothorac. Surg. 2014, 3, 563–569. [Google Scholar]
- Maltais, S.; Anwer, L.A.; Tchantchaleishvili, V.; Haglund, N.A.; Dunlay, S.M.; Aaronson, K.D.; Pagani, F.D.; Cowger, J.; Salerno, C.T.; Shah, P.; et al. Left Lateral Thoracotomy for Centrifugal Continuous-Flow Left Ventricular Assist Device Placement: An Analysis from the Mechanical Circulatory Support Research Network. ASAIO J. 2018, 64, 715–720. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.M.; Aftab, M.; Singh, S.K.; Mallidi, H.R.; Frazier, O.H. Left ventricular assist device outflow graft: Alternative sites. Ann. Cardiothorac. Surg. 2014, 3, 541–545. [Google Scholar] [PubMed]
- McGee, E., Jr.; Danter, M.; Strueber, M.; Mahr, C.; Mokadam, N.A.; Wieselthaler, G.; Klein, L.; Lee, S.; Boeve, T.; Maltais, S.; et al. Evaluation of a lateral thoracotomy implant approach for a centrifugal-flow left ven-tricular assist device: The LATERAL clinical trial. J. Heart Lung Transplant. 2019, 38, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Gosev, I.; Wood, K.; Ayers, B.; Barrus, B.; Knight, P.; Alexis, J.D.; Vidula, H.; Lander, H.; Wyrobek, J.; Cheyne, C.; et al. Implantation of a fully magnetically levitated left ventricular assist device using a ster-nal-sparing surgical technique. J. Heart Lung Transplant. 2020, 39, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potapov, E.V.; Kukucka, M.; Falk, V.; Krabatsch, T. Off-pump implantation of the HeartMate 3 left ventricular assist device through a bilateral thoracotomy approach. J. Thorac. Cardiovasc. Surg. 2017, 153, 104–105. [Google Scholar] [CrossRef] [Green Version]
- Hanke, J.S.; Rojas, S.V.; Cvitkovic, T.; Wiegmann, B.; Horke, A.; Warnecke, G.; Haverich, A.; Schmitto, J.D. First results of HeartWare left ventricular assist device implantation with tunnelling of the outflow graft through the transverse sinus. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Ozbaran, M.; Yagdi, T.; Engin, C.; Nalbantgil, S.; Ozturk, P. Left ventricular assist device implantation with left lateral thoracot-omy with anastomosis to the descending aorta. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 186–190. [Google Scholar] [CrossRef]
- Teuteberg, J.J.; Cleveland, J.C.; Cowger, J.; Higgins, R.S.; Goldstein, D.J.; Keebler, M.; Kirklin, J.K.; Myers, S.L.; Salerno, C.T.; Stehlik, J.; et al. The Society of Thoracic Surgeons Intermacs 2019 Annual Report: The Changing Landscape of Devices and Indications. Ann. Thorac. Surg. 2020, 109, 649–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milano, C.A.; Rogers, J.G.; Tatooles, A.J.; Bhat, G.; Slaughter, M.S.; Birks, E.J.; Mokadam, N.A.; Mahr, C.; Miller, J.S.; Markham, D.W.; et al. HVAD: The ENDURANCE Supplmental Trial. JACC Heart. Fail. 2018, 6, 792–802. [Google Scholar] [CrossRef]
- Uriel, N.; Colombo, P.C.; Cleveland, J.C.; Long, J.W.; Salerno, C.; Goldstein, D.J.; Patel, C.B.; Ewald, G.A.; Tatooles, A.J.; Silvestry, S.C.; et al. Hemocompatibility-Related Outcomes in the MOMENTUM 3 Trial at 6 Months. Circulation 2017, 135, 2003–2012. [Google Scholar] [CrossRef]
- Mehra, M.R.; Goldstein, D.J.; Uriel, N.; Cleveland, J.C., Jr.; Yuzefpolskaya, M.; Salerno, C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Ewald, G.A.; et al. Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in HeartFailure. N. Engl. J. Med. 2018, 378, 1386–1395. [Google Scholar] [CrossRef] [PubMed]
- Pae, W.E.; Connell, J.M.; Adelowo, A.; Boehmer, J.P.; Korfer, R.; El-Banayosy, A.; Hetzer, R.; Vigano, M.; Pavie, A. Does Total Implantability Reduce Infection With the Use of a Left Ventricular Assist Device? The LionHeart Experience in Europe. J. Hear. Lung Transplant. 2007, 26, 219–229. [Google Scholar] [CrossRef]
- Pya, Y.; Maly, J.; Bekbossynova, M.; Salov, R.; Schueler, S.; Meyns, B.; Kassif, Y.; Massetti, M.; Zilbershlag, M.; Netuka, I. First human use of a wireless coplanar energy transfer coupled with a continu-ous-flow left ventricular assist device. J. Heart Lung Transplant. 2019, 38, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Selzman, C.H.; Koliopoulou, A.; Glotzbach, J.P.; McKellar, S.H. Evolutionary Improvements in the Jarvik 2000 Left Ventricular Assist Device. ASAIO J. 2018, 64, 827–830. [Google Scholar] [CrossRef]
- Tarzia, V.; Di Giammarco, G.; Di Mauro, M.; Bortolussi, G.; Maccherini, M.; Tursi, V.; Maiani, M.; Bernazzali, S.; Marinelli, D.; Foschi, M.; et al. From bench to bedside: Can the improvements in left ventricular assist de-vice design mitigate adverse events and increase survival? J. Thorac. Cardiovasc. Surg. 2016, 151, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eulert-Grehn, J.J.; Lanmüller, P.; Schönrath, F.; Solowjowa, N.; Müller, M.; Mulzer, J.; Kaufmann, F.; Starck, C.; Krabatsch, T.; Falk, V.; et al. Two implantable continuous-flow ventricular assist devices in a biventric-ular configuration: Technique and results. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 938–942. [Google Scholar] [CrossRef] [PubMed]
- Lavee, J.; Mulzer, J.; Krabatsch, T.; Marasco, S.; McGiffin, D.; Garbade, J.; Schmitto, J.D.; Zimpfer, D.; Potapov, E.V. An international multicenter experience of biventricular support with HeartMate 3 ventricular assist systems. J. Heart Lung Transplant. 2018, 37, 1399–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strueber, M.; Schmitto, J.D.; Kutschka, I.; Haverich, A. Placement of 2 implantable centrifugal pumps to serve as a total artificial heart after cardiectomy. J. Thorac. Cardiovasc. Surg. 2012, 143, 507–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebreton, G.; Mastroianni, C.; Amour, J.; Leprince, P. Implantation of Two HVADs Used as a Total Artificial Heart: A New Ap-proach. Ann. Thorac. Surg. 2019, 107, e165–e167. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loforte, A.; Botta, L.; Boschi, S.; Gliozzi, G.; Cavalli, G.G.; Mariani, C.; Martin Suarez, S.; Pacini, D. Durable Continuous-Flow Mechanical Circulatory Support: State of the Art. Hearts 2021, 2, 127-138. https://doi.org/10.3390/hearts2010010
Loforte A, Botta L, Boschi S, Gliozzi G, Cavalli GG, Mariani C, Martin Suarez S, Pacini D. Durable Continuous-Flow Mechanical Circulatory Support: State of the Art. Hearts. 2021; 2(1):127-138. https://doi.org/10.3390/hearts2010010
Chicago/Turabian StyleLoforte, Antonio, Luca Botta, Silvia Boschi, Gregorio Gliozzi, Giulio Giovanni Cavalli, Carlo Mariani, Sofia Martin Suarez, and Davide Pacini. 2021. "Durable Continuous-Flow Mechanical Circulatory Support: State of the Art" Hearts 2, no. 1: 127-138. https://doi.org/10.3390/hearts2010010
APA StyleLoforte, A., Botta, L., Boschi, S., Gliozzi, G., Cavalli, G. G., Mariani, C., Martin Suarez, S., & Pacini, D. (2021). Durable Continuous-Flow Mechanical Circulatory Support: State of the Art. Hearts, 2(1), 127-138. https://doi.org/10.3390/hearts2010010