Brain Protection in the Endo-Management of Proximal Aortic Aneurysms
Abstract
:1. Introduction
2. The Spectrum of Neurological Brain Injury (NBI)
3. Mechanism of Neurological Brain Injury
4. Neuroprotective Strategies against Solid Cerebral Embolisation
4.1. Cerebral Embolic Protection Devices (CEPDs)
4.2. Carotid Clamping and Flow Reversal
4.3. Robotic Navigation
5. Neuroprotective Strategies against Gaseous Cerebral Embolisation
5.1. TEVAR Delivery System Flushing Techniques
5.2. Gaseous Filter Devices
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, D.; Martin, J.; Shennib, H.; Dunning, J.; Muneretto, C.; Schueler, S.; Von Segesser, L.; Sergeant, P.; Turina, M. Endovascular aortic repair versus open surgical repair for descending thoracic aortic disease: A systematic review and meta-analysis of comparative studies. J. Am. Coll. Cardiol. 2010, 55, 986–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harky, A.; Chan, J.S.; Wong, C.H.; Bashir, M. Open versus endovascular repair of descending thoracic aortic aneurysm disease: A systematic review and meta-analysis. Ann. Vasc. Surg. 2019, 54, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Haulon, S.; Greenberg, R.K.; Spear, R.; Eagleton, M.; Abraham, C.; Lioupis, C.; Verhoeven, E.; Ivancev, K.; Kölbel, T.; Stanley, B. Global experience with an inner branched arch endograft. J. Thorac. Cardiovasc. Surg. 2014, 148, 1709–1716. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, C.; Coscarella, C.; Cao, P. Endovascular repair of aortic arch disease with double inner branched thoracic stent graft: The Bolton perspective. J. Cardiol. Surg. 2018, 59, 547–553. [Google Scholar]
- Tsilimparis, N.; Debus, E.S.; von Kodolitsch, Y.; Wipper, S.; Rohlffs, F.; Detter, C.; Roeder, B.; Kölbel, T. Branched versus fenestrated endografts for endovascular repair of aortic arch lesions. J. Vasc. Surg. 2016, 64, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Gutsche, J.T.; Cheung, A.T.; McGarvey, M.L.; Moser, W.G.; Szeto, W.; Carpenter, J.P.; Fairman, R.M.; Pochettino, A.; Bavaria, J.E. Risk factors for perioperative stroke after thoracic endovascular aortic repair. Ann. Thorac. Surg. 2007, 84, 1195–1200. [Google Scholar] [CrossRef]
- Perera, A.H.; Rudarakanchana, N.; Monzon, L.; Bicknell, C.D.; Modarai, B.; Kirmi, O.; Athanasiou, T.; Hamady, M.; Gibbs, R.G. Cerebral embolization, silent cerebral infarction and neurocognitive decline after thoracic endovascular aortic repair. Br. J. Surg. 2018, 105, 366–378. [Google Scholar] [CrossRef]
- Kahlert, P.; Eggebrecht, H.; Jánosi, R.A.; Hildebrandt, H.A.; Plicht, B.; Tsagakis, K.; Moenninghoff, C.; Nensa, F.; Mummel, P.; Heusch, G.; et al. Silent cerebral ischemia after thoracic endovascular aortic repair: A neuroimaging study. Ann. Thorac. Surg. 2014, 98, 53–58. [Google Scholar] [CrossRef]
- Gray, W.A.; Mehta, M.; Alani, F.; Kasirajan, K.; Begg, R.J.; Bacharach, J.M.; Soukas, P.A. EMBOLDEN Clinical Study Investigators. Use of a novel embolic filter in carotid artery stenting: 30-Day results from the EMBOLDEN Clinical Study. Catheter. CardioVasc. Inter. 2018, 92, 1128–1135. [Google Scholar] [CrossRef]
- Haussig, S.; Mangner, N.; Dwyer, M.G.; Lehmkuhl, L.; Lück, C.; Woite, F.; Holzhey, D.M.; Mohr, F.W.; Gutberlet, M.; Zivadinov, R.; et al. Effect of a cerebral protection device on brain lesions following transcatheter aortic valve implantation in patients with severe aortic stenosis: The CLEAN-TAVI randomized clinical trial. JAMA 2016, 316, 592–601. [Google Scholar] [CrossRef]
- Van Mieghem, N.M.; van Gils, L.; Ahmad, H.; Van Kesteren, F.; Van Der Werf, H.W.; Brueren, G.; Storm, M.; Lenzen, M.; Daemen, J.; van den Heuvel, A.F.; et al. Filter-based cerebral embolic protection with transcatheter aortic valve implantation: The randomised MISTRAL-C trial. EuroIntervention 2016, 12, 499–507. [Google Scholar] [CrossRef]
- Lansky, A.J.; Schofer, J.; Tchetche, D.; Stella, P.; Pietras, C.G.; Parise, H.; Abrams, K.; Forrest, J.K.; Cleman, M.; Reinoehl, J.; et al. A prospective randomized evaluation of the TriGuard™ HDH embolic DEFLECTion device during transcatheter aortic valve implantation: Results from the DEFLECT III trial. Eur. Heart. J. 2015, 36, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Rodés-Cabau, J.; Kahlert, P.; Neumann, F.J.; Schymik, G.; Webb, J.G.; Amarenco, P.; Brott, T.; Garami, Z.; Gerosa, G.; Lefèvre, T.; et al. Feasibility and exploratory efficacy evaluation of the Embrella Embolic Deflector system for the prevention of cerebral emboli in patients undergoing transcatheter aortic valve replacement: The PROTAVI-C pilot study. JACC. Cardiovasc. Interven. 2014, 7, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Wohrle, J. Coronary and Structural Interventions Ulm Transcatheter Aortic Valve Replacement (CSI-Ulm-TAVR) University of Ulm. 2017. Available online: https://clinicaltrials.gov/ct2/show/NCT02162069 (accessed on 28 May 2020).
- Kapadia, S.R.; Kodali, S.; Makkar, R.; Mehran, R.; Lazar, R.M.; Zivadinov, R.; Dwyer, M.G.; Jilaihawi, H.; Virmani, R.; Anwaruddin, S.; et al. Protection against cerebral embolism during transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2017, 69, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Jánosi, R.A. Cerebral Protection against Embolization during Thoracic EndoVascular Aortic Repair. LINC. 2016. Available online: http://claretmedical.com/pdf/studies/LINC_2016_Claret_Janosi_TEVAR.pdf (accessed on 28 March 2020).
- Messé, S.R.; Acker, M.A.; Kasner, S.E.; Fanning, M.; Giovannetti, T.; Ratcliffe, S.J.; Bilello, M.; Szeto, W.Y.; Bavaria, J.E.; Hargrove III, W.C.; et al. Stroke after aortic valve surgery: Results from a prospective cohort. Circulation 2013, 129, 2253–2261. [Google Scholar] [CrossRef] [Green Version]
- Cees De Groot, J.; De Leeuw, F.E.; Oudkerk, M.; Van Gijn, J.; Hofman, A.; Jolles, J.; Breteler, M.M. Cerebral white matter lesions and cognitive function: The Rotterdam Scan Study. Ann. Neurol. 2000, 47, 145–151. [Google Scholar] [CrossRef]
- Forsberg, L.; Sigurdsson, S.; Fredriksson., J.; Egilsdottir, A.; Oskarsdottir, B.; Kjartansson, O.; van Buchem, M.A.; Launer, L.J.; Gudnason, V.; Zijdenbos, A. The AGES-Reykjavik study atlases: Non-linear multi-spectral template and atlases for studies of the ageing brain. Med. Image. Anal. 2017, 39, 133–144. [Google Scholar] [CrossRef]
- Debette, S.; Schilling, S.; Duperron, M.G.; Larsson, S.C.; Markus, H.S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis. JAMA. Neurol. 2019, 76, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, K.F.; Silva, M.D.; Omae, T.; Sotak, C.H.; Fenstermacher, J.D.; Fisher, M.; Hsu, C.Y.; Lin, W. Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats: Correlation with histopathology. Stroke 2000, 31, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Suter, O.C.; Sunthorn, T.; Kraftsik, R.; Straubel, J.; Darekar, P.; Khalili, K.; Miklossy, J. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke 2002, 33, 1986–1992. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Baughman, B.D.; Soman, S.; WintermarK, M.; Lazzeroni, L.C.; Hitchner, E.; Bhat, J.; Rosen, A. Volume of subclinical embolic infarct correlates to long-term cognitive changes after carotid revascularization. J. Vasc. Surg. 2017, 65, 686–694. [Google Scholar] [CrossRef] [Green Version]
- Barber, P.A.; Hach, S.; Tippett, L.J.; Ross, L.; Merry, A.F.; Milsom, P. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke 2008, 39, 1427–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansky, A.J.; Messé, S.R.; Brickman, A.M.; Dwyer, M.; van der Worp, H.B.; Lazar, R.M.; Pietras, C.G.; Abrams, K.J.; McFadden, E.; Petersen, N.H.; et al. Proposed standardized neurological endpoints for cardiovascular clinical trials: An academic research consortium initiative. J. Am. Coll. Cardiol. 2017, 69, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Kotelis, D.; Bischoff, M.S.; Jobst, B.; von Tengg-Kobligk, H.; Hinz, U.; Geisbüsch, P.; Böckler, D. Morphological risk factors of stroke during thoracic endovascular aortic repair. Langenbecks. Archs. Surg. 2012, 397, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Melissano, G.; Tshomba, Y.; Bertoglio, L.; Rinaldi, E.; Chiesa, R. Analysis of stroke after TEVAR involving the aortic arch. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Feezor, R.J.; Martin, T.D.; Hess, P.J.; Klodell, C.T.; Beaver, T.M.; Huber, T.S.; Seeger, J.M.; Lee, W.A. Risk factors for perioperative stroke during thoracic endovascular aortic repairs (TEVAR). J.Endovasc.Ther. 2007, 14, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Kasirajan, K.; Veeraswamy, R.K.; Dodson, T.F.; Salam, A.A.; Chaikof, E.L.; Corriere, M.A. Left subclavian artery coverage during thoracic endovascular aortic repair and risk of perioperative stroke or death. J. Vasc. Surg. 2011, 54, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Ullery, B.W.; McGarvey, M.; Cheung, A.T.; Fairman, R.M.; Jackson, B.M.; Woo, E.Y.; Desai, N.D.; Wang, G.J. Vascular distribution of stroke and its relationship to perioperative mortality and neurologic outcome after thoracic endovascular aortic repair. J. Vasc. Surg. 2012, 56, 1510–1517. [Google Scholar] [CrossRef] [Green Version]
- Bismuth, J.; Garami, Z.; Anaya-Ayala, J.E.; Naoum, J.J.; El Sayed, H.F.; Peden, E.K.; Lumsden, A.B.; Davies, M.G. Transcranial Doppler findings during thoracic endovascular aortic repair. J. Vasc. Surg. 2011, 54, 364–369. [Google Scholar] [CrossRef] [Green Version]
- Grover, G.; Perera, A.H.; Hamady, M.; Rudarakanchana, N.; Barras, C.D.; Singh, A.; Davies, A.H.; Gibbs, R. Cerebral embolic protection in thoracic endovascular aortic repair. J. Vasc. Surg. 2018, 68, 1656–1666. [Google Scholar] [CrossRef]
- Inci, K.; Koutouzi, G.; Chernoray, V.; Jeppsson, A.; Nilsson, H.; Falkenberg, M. Air bubbles are released by thoracic endograft deployment: An in vitro experimental study. SAGE. Open. Med. 2016, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Rohlffs, F.; Tsilimparis, N.; Saleptsis, V.; Diener, H.; Debus, E.S.; Kölbel, T. Air embolism during TEVAR: Carbon dioxide flushing decreases the amount of gas released from thoracic stent-grafts during deployment. J. Endovasc. Ther. 2017, 24, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, J.; Tittley, J.; Misskey, J.D. IP063. Analysis and Quantification of Retained Air in Thoracic Aortic Endografts. J. Vasc. Surg. 2017, 65, 73S. [Google Scholar] [CrossRef]
- Gorman, D.F.; Browning, D.M. Cerebral vasoreactivity and arterial gas embolism. Undersea. Biomed. Res. 1986, 13, 317–335. [Google Scholar] [PubMed]
- Kudo, M.O.; Aoyama, A.K.; Ichimori, .S.H.; Fukunaga, N. An animal model of cerebral infarction. Homologous blood clot emboli in rats. Stroke 1982, 13, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Gerriets, T.; Walberer, M.; Nedelmann, M.; Doenges, S.; Ritschel, N.; Bachmann, G.; Stolz, E.; Kaps, M.; Urbanek, S.; Urbanek, P.; et al. A rat model for cerebral air microembolisation. J. Neurosci. Methods. 2010, 190, 10–13. [Google Scholar] [CrossRef]
- Lund, C.; Nes, R.B.; Ugelstad, T.P.; Due-Tønnessen, P.; Andersen, R.; Hol, P.K.; Brucher, R.; Russell, D. Cerebral emboli during left heart catheterization may cause acute brain injury. Eur. Heart. J. 2005, 26, 1269–1275. [Google Scholar] [CrossRef]
- Skjelland, M.; Michelsen, A.; Brosstad, F.; Svennevig, J.L.; Brucher, R.; Russell, D. Solid cerebral microemboli and cerebrovascular symptoms in patients with prosthetic heart valves. Stroke 2008, 39, 1159–1164. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.J.; Benson, M.; Vadlamudi, L.; Miller, P. Cerebral arterial gas embolism by helium: An unusual case successfully treated with hyperbaric oxygen and lidocaine. Ann. Emerg. Med. 2000, 35, 300–303. [Google Scholar] [CrossRef]
- Shah, A.S.; Akhmerov, A.; Gupta, N.; Chakravarty, T.; Makkar, R.R.; Azizzadeh, A. Use of a Dual-Filter Cerebral Embolic Protection Device in Thoracic Endovascular Aortic Repair. Ann. Vasc Surg. 2020, 65, 54.e1–54.e4. [Google Scholar] [CrossRef]
- Van Gils, L.; Kroon, H.; Daemen, J.; Ren, C.; Maugenest, A.M.; Schipper, M.; De Jaegere, P.P.; Van Mieghem, N.M. Complete filter-based cerebral embolic protection with transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv. 2018, 91, 790–797. [Google Scholar] [CrossRef]
- Shimamura, K.; Kuratani, T.; Kin, K.; Shijo, T.; Masada, K.; Sawa, Y. Effectiveness of embolic protection filter devices in stroke prevention during endovascular aortic arch repair in significant aortic atheroma patients. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, M.; Kazekawa, K.; Onizuka, M.; Kodama, T.; Nii, K.; Aikawa, H.; Iko., M.; Tomokiyo, M.; Matsubara, S.; Tanaka, A. Cerebral protection during retrograde carotid artery stenting for proximal carotid artery stenosis. Neurol. Med. Chir. 2007, 47, 285–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masada, K.; Kuratani, T.; Shimamura, K.; Kin, K.; Shijo, T.; Goto, T.; Sawa, Y. Silent cerebral infarction after thoracic endovascular aortic repair: A magnetic resonance imaging study. Eur. J. Cardiothroac. Surg. 2019, 55, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Ribo, M.; Molina, C.A.; Alvarez, B.; Rubiera, M.; Alvarez-Sabin, J.; Matas, M. Transcranial Doppler monitoring of transcervical carotid stenting with flow reversal protection: A novel carotid revascularization technique. Stroke 2006, 37, 2846–2849. [Google Scholar] [CrossRef] [Green Version]
- Luk, Y.; Chan, Y.C.; Cheng, S.W. Transcarotid Artery Revascularization as a new Modality of Treatment for Carotid Stenosis. Ann. Vasc. Surg. 2020, 64, 397–404. [Google Scholar] [CrossRef]
- Rippel, R.A.; Rolls, A.E.; Riga, C.V.; Hamady, M.; Cheshire, N.J.; Bicknell, C.D. The use of robotic endovascular catheters in the facilitation of transcatheter aortic valve implantation. Eur. J. Cardiothroac. Surg 2014, 45, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Perera, A.H.; Riga, C.V.; Monzon, L.; Gibbs, R.G.; Bicknell, C.D.; Hamady, M. Robotic arch catheter placement reduces cerebral embolization during thoracic endovascular aortic repair (TEVAR). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Martens, S.; Neumann, K.; Sodemann, C.; Deschka, H.; Wimmer-Greinecker, G.; Moritz, A. Carbon dioxide field flooding reduces neurologic impairment after open heart surgery. Ann. Thorac. Surg. 2008, 85, 543–547. [Google Scholar] [CrossRef]
- Listewnik, M.; Kotfis, K.; Ślozowski, P.; Mokrzycki, K.; Brykczyński, M. The influence of carbon dioxide field flooding in mitral valve operations with cardiopulmonary bypass on S100ß level in blood plasma in the aging brain. Clin. Interv. Aging. 2018, 25, 1837–1845. [Google Scholar] [CrossRef] [Green Version]
- Kalpokas, M.; Nixon, I.; Kluger., R.; Beilby, D.; Silbert, B. Carbon dioxide field flooding versus mechanical de-airing during open-heart surgery: A prospective randomized controlled trial. Perfusion. 2003, 18, 291–294. [Google Scholar] [CrossRef]
- Kölbel, T.; Rohlffs., F.; Wipper, S.; Carpenter., S.W.; Debus, E.S.; Tsilimparis, N. Carbon dioxide flushing technique to prevent cerebral arterial air embolism and stroke during TEVAR. J. Endovasc. Ther. 2016, 23, 393–395. [Google Scholar]
- Hanna., L.; Perera, A.; Grover, G.; Singh, A.; Hamady, M.; Bicknell, C.B.; Gibbs, R. Carbon-Dioxide Flushing in Thoracic Aortic Stenting to Reduce Neurological Brain Injury: An observational case-control study. In Proceedings of the 68th International Congress 2019, European Society of Cardiovascular and Endovascular Surgery, Groningen, The Netherlands, 22–25 May 2019. [Google Scholar]
- Rohlffs, F.; Tsilimparis, N.; Trepte, C.; Kratzberg, J.; Mogensen, J.; Debus, E.S.; Kölbel, T. Air embolism during TEVAR: An additional flush port on the delivery system pusher significantly reduces the amount of air released during deployment of a thoracic stent-graft in an experimental setting. J. Endovasc. Ther. 2018, 25, 435–439. [Google Scholar] [CrossRef]
- Rohlffs, F.; Trepte, C.; Ivancev, K.; Tsilimparis, N.; Makaloski, V.; Debus, E.S.; Kölbel, T. Air embolism during TEVAR: Liquid Perfluorocarbon absorbs carbon dioxide in a combined flushing technique and decreases the amount of gas released from thoracic Stent-grafts during deployment in an experimental setting. J. Endovasc. Ther. 2019, 26, 76–80. [Google Scholar] [CrossRef]
- Gerriets, T.; Schwarz, N.; Sammer, G.; Baehr, J.; Stolz, E.; Kaps, M.; Kloevekorn, W.P.; Bachmann, G.; Schönburg, M. Protecting the brain from gaseous and solid micro-emboli during coronary artery bypass grafting: A randomized controlled trial. Eur. Heart. J. 2010, 31, 360–368. [Google Scholar] [CrossRef]
- Haiman, G.; Nazif, T.; Moses, J.W.; Ashkenazi, A.; Margolis, P.; Lansky, A.J. Reduction of Cerebral Emboli: In vitro Study with a Novel Cerebral Embolic Protection Device. Med. Devices (Auckl) 2020, 13, 67. [Google Scholar] [CrossRef] [Green Version]
Embrella (Edwards Lifesciences; Irvine, CA, United States) | TriGuard (Keystone Heart Ltd., Herzliya, Israel) | SENTINELTM (Boston Scientific, MA, United States) | |
---|---|---|---|
Structure | Two polyurethane membrane/mesh (pore size 100um) mounted on a nitinol frame | Nitinol frame and polymeric membrane/mesh (pore size 115 × 145 um) | Two cone shaped mesh filters (pore size 140 um, proximal filter 15 mm in size, distal filter 10 mm in size) connected by an articulating catheter |
Placement | Aortic Arch | Aortic Arch | Directly into brachiocephalic (proximal filter) and left common carotid artery (distal filter) |
Access and Sheath Size | Radial/ulnar/brachial 6F | Femoral 9F | Radial/brachial 6F |
Embolic protection method | Deflection | Deflection | Filter and capture |
Supra-aortic vessels protected | Brachiocephalic and left common carotid arteries | Brachiocephalic, left common carotid and left subclavian arteries | Brachiocephalic and left common carotid arteries |
Vascular territory protection | Anterior circulation | Anterior and posterior circulation | Anterior circulation |
Embrella (Edwards Lifesciences; Irvine, California, United States) | TriGuard (Keystone Heart Ltd., Herzliya, Israel) | SENTINELTM (Boston Scientific, MA, United States) | |
---|---|---|---|
Pivotal study/s | PROTAVI-C | DEFLECT III | CLEAN-TAVI1 MISTRAL-C1 SENTINEL1 CSI-Ulm-TAVR2 |
Methods | Prospective, non-randomised | RCT | 1.RCT 2.Prospective non-randomised |
Patients (CEPD vs. controls) | 41 vs. 11 | 46 vs. 39 | CLEAN-TAVI: 50 vs. 50 MISTRAL-C: 32 vs. 33 SENTINEL: 244 vs. 119 CSI-Ulm-TAVR: 802 |
Results | Stroke/TIA 7.3% CEPD vs. control 0% (p > 0.05) DW-MRI: Non-significant increase in DW-MRI infarcts in CEPD group (8vs.4, p = 0.41) Significantly lower DW-MRI infarct volumes (40% smaller, p = 0.003) in CEPD group Neurocognitive Mild significant improvement at 30 days compared with baseline in CEPD group (p < 0.001) vs. no difference in control group over time (p = 0.678) | Stroke/TIA 2.2% CEPD vs. 5.1 control (p = 0.46) 3.1% worsening NIHSS score from baseline in CEPD vs. 15.4% control (p = 0.16) DW-MRI: Greater freedom from DW-MRI infarct in CEPD (21.2 vs. 11.5%), -44% reduction of median DW-MRI infarct volume (p = 0.07) Neurocognitive At discharge and at 30 days, fewer TriGuard patients in both the ITT and PT populations had a worsening in MoCA scores Mean MoCA score improved from baseline to discharge and 30 days in the TriGuard group; in the control group, the mean score declined from baseline to discharge and rebounded to approximately baseline levels at 30 days | Stroke/TIA CLEAN-TAVI: 5% CEPD vs. control 5% MISTRAL-C 0% CEPD vs. control 7% % SENTINEL: 5.6% vs. 9.1%; p = 0.25) CSI-Ulm-TAVR: 1.4% vs. 4.2% (p = 0.03) DW-MRI CLEAN-TAVI: significantly lower number and volume of DW-MRI in CEPD group (p < 0.001) MISTRAL-C: Greater freedom from DW-MRI infarct in CEPD (27% vs. 13%), lower number and volume of DW-MRI infarcts SENTINEL: significant reductions in DW-MRI volume in both protected and all territories in the CEPD group vs. controls (p = 0.025 and p = 0.050 for protected and all territories, respectively. CSI-Ulm-TAVR: Neurocognitive: CLEAN-TAVI: 50% vs. 72.2% overall worsening early MoCA scores MISTRAL-C: 4% vs. 27% cognitive deterioration (p = 0.017) SENTINEL: Significant correlation between change in neurocognitive scores from baseline to 30-day follow-up with median DW-MRI lesion volume in protected territories (p = 0.0109 and unprotected territories (p = 0.003) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanna, L.; Gibbs, R. Brain Protection in the Endo-Management of Proximal Aortic Aneurysms. Hearts 2020, 1, 25-37. https://doi.org/10.3390/hearts1020005
Hanna L, Gibbs R. Brain Protection in the Endo-Management of Proximal Aortic Aneurysms. Hearts. 2020; 1(2):25-37. https://doi.org/10.3390/hearts1020005
Chicago/Turabian StyleHanna, Lydia, and Richard Gibbs. 2020. "Brain Protection in the Endo-Management of Proximal Aortic Aneurysms" Hearts 1, no. 2: 25-37. https://doi.org/10.3390/hearts1020005
APA StyleHanna, L., & Gibbs, R. (2020). Brain Protection in the Endo-Management of Proximal Aortic Aneurysms. Hearts, 1(2), 25-37. https://doi.org/10.3390/hearts1020005