Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Graphene Oxide Sheets
2.3. Synthesis of Mn2O3 Nanoparticles
2.4. Synthesis of Fe2O3 Nanoparticles
2.5. Synthesis of Mn2O3-rGO and Fe2O3-rGO Nanocomposites
2.6. Preparation of Mn2O3-rGO and Fe2O3-rGO PVA Nanofibers
2.7. AntiMicrobial Activity Study
2.8. Characterization Techniques
3. Results and Discussion
3.1. XRD Characterization
3.2. FT-IR
3.3. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biener, J.; Wittstock, A.; Baumann, T.F.; Weissmüller, J.; Bäumer, M.; Hamza, A.V. Surface chemistry in nanoscale materials. Materials 2009, 2, 2404–2428. [Google Scholar] [CrossRef]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A review on electrospun nanofibers based advanced applications: From health care to energy devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef] [PubMed]
- Nadaf, A.; Gupta, A.; Hasan, N.; Ahmad, S.; Kesharwani, P.; Ahmad, F.J. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications. RSC Adv. 2022, 12, 23808–23828. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, G.B.; Lima, F.d.A.; de Almeida, D.S.; Guerra, V.G.; Aguiar, M.L. Modification and functionalization of fibers formed by electrospinning: A review. Membranes 2022, 12, 861. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Yu, M.; Xue, Y.; Hu, J.; Lin, J. Structure and mechanical performance of poly (vinyl alcohol) nanocomposite by incorporating graphitic carbon nitride nanosheets. Polymers 2019, 11, 610. [Google Scholar] [CrossRef]
- Nasrallah, D.A.; Ibrahim, M.A. Enhancement of physico-chemical, optical, dielectric and antimicrobial properties of polyvinyl alcohol/carboxymethyl cellulose blend films by addition of silver doped hydroxyapatite nanoparticles. J. Polym. Res. 2022, 29, 86. [Google Scholar] [CrossRef]
- Anstey, A.; Chang, E.; Kim, E.S.; Rizvi, A.; Kakroodi, A.R.; Park, C.B.; Lee, P.C. Nanofibrillated polymer systems: Design, application, and current state of the art. Prog. Polym. Sci. 2021, 113, 101346. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Recent progress and potential biomedical applications of electrospun nanofibers in regeneration of tissues and organs. Polymers 2022, 14, 1508. [Google Scholar] [CrossRef]
- Attia, N.F.; Eid, A.M.; Soliman, M.A.; Nagy, M. Exfoliation and decoration of graphene sheets with silver nanoparticles and their antibacterial properties. J. Polym. Environ. 2018, 26, 1072–1077. [Google Scholar] [CrossRef]
- Ahmad, R.; Bhat, K.S.; Ahn, M.-S.; Hahn, Y.-B. Fabrication of a robust and highly sensitive nitrate biosensor based on directly grown zinc oxide nanorods on a silver electrode. New J. Chem. 2017, 41, 10992–10997. [Google Scholar] [CrossRef]
- Attia, N.F.; Abd El-Monaem, E.M.; El-Aqapa, H.G.; Elashery, S.E.; Eltaweil, A.S.; El Kady, M.; Khalifa, S.A.; Hawash, H.B.; El-Seedi, H.R. Iron oxide nanoparticles and their pharmaceutical applications. Appl. Surf. Sci. Adv. 2022, 11, 100284. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Martínez, G.; Gómez, M.A. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J. Mater. Chem. 2009, 19, 5027–5032. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Erratum: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites (Macromolecules (2010) 43 (2357–2363)). Macromolecules 2011, 44, 2392. [Google Scholar] [CrossRef]
- Iravani, S.; Zarepour, A.; Zare, E.N.; Makvandi, P.; Khosravi, A.; Zarrabi, A. Synergistic advancements: Exploring MXene/graphene oxide and MXene/reduced graphene oxide composites for next-generation applications. FlatChem 2024, 48, 100759. [Google Scholar] [CrossRef]
- Zare, I.; Mirshafiei, M.; Kheilnezhad, B.; Far, B.F.; Hassanpour, M.; Pishbin, E.; Vaghefi, S.S.E.; Yazdian, F.; Rashedi, H.; Hasan, A. Hydrogel-integrated graphene superstructures for tissue engineering: From periodontal to neural regeneration. Carbon 2024, 223, 118970. [Google Scholar] [CrossRef]
- Rana, K.; Kaur, H.; Singh, N.; Sithole, T.; Siwal, S.S. Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments. Next Mater. 2024, 3, 100107. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, Y.; Wang, C.; Pinna, N.; Lu, X. Transition metal sulfides meet electrospinning: Versatile synthesis, distinct properties and prospective applications. Nanoscale 2021, 13, 9112–9146. [Google Scholar] [CrossRef]
- Ansari, S.A.M.K.; Ficiarà, E.; Ruffinatti, F.A.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C.; D’Agata, F. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials 2019, 12, 465. [Google Scholar] [CrossRef]
- Lei, M.; Tang, L.; Du, H.; Peng, L.; Tie, B.; Williams, P.N.; Sun, G. Safety assessment and application of iron and manganese ore tailings for the remediation of As-contaminated soil. Process Saf. Environ. Prot. 2019, 125, 334–341. [Google Scholar] [CrossRef]
- Li, M.; Kuang, S.; Kang, Y.; Ma, H.; Dong, J.; Guo, Z. Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment. Sci. Total Environ. 2022, 819, 153157. [Google Scholar] [CrossRef]
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar] [CrossRef]
- Ghajarieh, A.; Habibi, S.; Talebian, A. Biomedical applications of nanofibers. Russ. J. Appl. Chem. 2021, 94, 847–872. [Google Scholar] [CrossRef]
- Prabhu, P. Nanofibers for medical diagnosis and therapy. Handb. Nanofibers 2019, 831–867. [Google Scholar]
- Zaaba, N.; Foo, K.; Hashim, U.; Tan, S.; Liu, W.-W.; Voon, C. Synthesis of graphene oxide using modified hummers method: Solvent influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Kalil, H.; Maher, S.; Bose, T.; Bayachou, M. Manganese oxide/hemin-functionalized graphene as a platform for peroxynitrite sensing. J. Electrochem. Soc. 2018, 165, G3133. [Google Scholar] [CrossRef]
- Gomaa, I.; Emam, M.H.; Wassel, A.R.; Ashraf, K.; Hussan, S.; Kalil, H.; Bayachou, M.; Ibrahim, M.A. Microspheres with 2D rGO/alginate matrix for unusual prolonged release of cefotaxime. Nanomaterials 2023, 13, 1527. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Vijaya Prasath, G.; Selvamurugan, M.; Usha, K.; Ravi, G. Hydrothermal synthesis of Fe2O3 nanoparticles and their electrochemical application. J. Mater. Sci. Mater. Electron. 2024, 35, 230. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Moholkar, V.S. Ultrasound-assisted facile one-pot synthesis of ternary MWCNT/MnO2/rGO nanocomposite for high performance supercapacitors with commercial-level mass loadings. Ultrason. Sonochem. 2022, 82, 105896. [Google Scholar] [CrossRef]
- Drew, W.L.; Barry, A.; O’Toole, R.; Sherris, J.C. Reliability of the Kirby-Bauer disc diffusion method for detecting methicillin-resistant strains of Staphylococcus aureus. Appl. Microbiol. 1972, 24, 240–247. [Google Scholar] [CrossRef]
- Vignesh, R.; Sivakumar, R.; Sanjeeviraja, C. Phase tuning of nebulized spray deposited manganese oxide thin films by the effect of annealing temperature and their linear and non-linear optical parameters. Optik 2022, 254, 168687. [Google Scholar] [CrossRef]
- Alagar, S.; Madhuvilakku, R.; Mariappan, R.; Piraman, S. Nano-architectured porous Mn2O3 spheres/cubes vs. rGO for asymmetric supercapacitors applications in novel solid-state electrolyte. J. Power Sources 2019, 441, 227181. [Google Scholar] [CrossRef]
- Mumtaz, M.; Mumtaz, A.; Nasim, F.; Sajid, M. Capacity Augmentation Strategy in α-Fe2O3 Nanoparticles Through Multifaceted Structural and Electrochemical Analyses. Mater. Chem. Phys. 2024, 329, 130035. [Google Scholar] [CrossRef]
- Naik, Y.V.; Kariduraganavar, M.Y.; Srinivasa, H.T.; Siddagangaiah, P.B.; Naik, R. Super capacitive electrode performance analysis of facile synthesized α-Fe2O3 aerogel and its nanocomposite with in-situ formed polyaniline (α-Fe2O3/PANI). J. Alloys Compd. 2024, 1004, 175820. [Google Scholar] [CrossRef]
- Nalbandian, M.J.; Zhang, M.; Sanchez, J.; Choa, Y.-H.; Nam, J.; Cwiertny, D.M.; Myung, N.V. Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources. Chemosphere 2016, 144, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Berenjian, A.; Maleknia, L.; Fard, G.C.; Almasian, A. Mesoporous carboxylated Mn2O3 nanofibers: Synthesis, characterization and dye removal property. J. Taiwan Inst. Chem. Eng. 2018, 86, 57–72. [Google Scholar] [CrossRef]
- Ahmad, J.; Majid, K. Improved thermal stability metal oxide/GO-based hybrid materials for enhanced Anti-inflammatory and Antioxidant activity. Polym. Bull. 2021, 78, 3889–3911. [Google Scholar] [CrossRef]
- Amiri, A.; Mirzaei, M.; Derakhshanrad, S. A nanohybrid composed of polyoxotungstate and graphene oxide for dispersive micro solid-phase extraction of non-steroidal anti-inflammatory drugs prior to their quantitation by HPLC. Microchim. Acta 2019, 186, 534. [Google Scholar] [CrossRef]
- Shoshin, D.E.; Sizova, E.A.; Kamirova, A.M. Morphological changes and luminescence of Escherichia coli in contact with Mn2O3 and Co3O4 ultrafine particles as components of a mineral feed additive. Vet. World 2024, 17, 1880. [Google Scholar] [CrossRef]
- Alangari, A.; Alqahtani, M.S.; Shahid, M.; Syed, R.; Goel, M.; Lakshmipathy, R.; Kaur, K. Green synthesis of FeO nanoparticles from coffee and its application for antibacterial, antifungal, and anti-oxidation activity. Green Process. Synth. 2024, 13, 20230268. [Google Scholar] [CrossRef]
- Ansari, N.; Tripathi, A.; Ameen, S.; Shaheer Akhtar, M.; Jabeen, F.; Rahman Khan, A.; Luqman, M.; Rahman, Q.I. Green Synthesis of Nanomaterials: Properties and Their Potential Applications. Sci. Adv. Mater. 2024, 16, 837–854. [Google Scholar] [CrossRef]
- Sahoo, H.; Sahoo, J.K. Iron Oxide-Based Nanocomposites and Nanoenzymes: Fundamentals and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
Sample | Inhibition Zone (mm) | ||
---|---|---|---|
PVA | 0 | ||
rGO | 0 | ||
PVA/rGO | 0 | ||
Composite ratio | 2:1 | 3:1 | 4:1 |
Fe2O3-rGO/PVA | 2 (s1) | 6 (s2) | 6 (s3) |
Mn2O3-rGO/PVA | 7 (s4) | 6 (s5) | 7 (s6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomaa, I.; Kalil, H.; Abdel-Salam, A.I.; Ibrahim, M.A.; Bayachou, M. Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity. Appl. Nano 2024, 5, 245-257. https://doi.org/10.3390/applnano5040016
Gomaa I, Kalil H, Abdel-Salam AI, Ibrahim MA, Bayachou M. Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity. Applied Nano. 2024; 5(4):245-257. https://doi.org/10.3390/applnano5040016
Chicago/Turabian StyleGomaa, Islam, Haitham Kalil, Ahmed I. Abdel-Salam, Medhat A. Ibrahim, and Mekki Bayachou. 2024. "Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity" Applied Nano 5, no. 4: 245-257. https://doi.org/10.3390/applnano5040016
APA StyleGomaa, I., Kalil, H., Abdel-Salam, A. I., Ibrahim, M. A., & Bayachou, M. (2024). Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity. Applied Nano, 5(4), 245-257. https://doi.org/10.3390/applnano5040016