Long-Term Plasmonic Stability of Copper Nanoparticles Produced by Gas-Phase Aggregation Method Followed by UV-Ozone Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. AFM Characterization of Deposited NPs
3.2. Evolution of X-ray Photoelectron and Auger Spectra with Time
3.3. Extinction Spectra of NPs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murray, W.A.; Barnes, W.L. Plasmonic Materials. Adv. Mater. 2007, 19, 3771–3782. [Google Scholar] [CrossRef]
- Stratakis, E.; Kymakis, E. Nanoparticle-Based Plasmonic Organic Photovoltaic Devices. Mater. Today 2013, 16, 133–146. [Google Scholar] [CrossRef]
- Langer, J.; Novikov, S.M.; Liz-Marzán, L.M. Sensing Using Plasmonic Nanostructures and Nanoparticles. Nanotechnology 2015, 26, 322001. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Rycenga, M.; Cobley, C.M.; Zeng, J.; Li, W.; Moran, C.H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669–3712. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Elsayed-Ali, H.E. Stability of Ag Nanoparticles Fabricated by Electron Beam Lithography. Mater. Lett. 2009, 63, 2263–2266. [Google Scholar] [CrossRef]
- Scuderi, M.; Esposito, M.; Todisco, F.; Simeone, D.; Tarantini, I.; De Marco, L.; De Giorgi, M.; Nicotra, G.; Carbone, L.; Sanvitto, D.; et al. Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. J. Phys. Chem. C 2016, 120, 24314–24323. [Google Scholar] [CrossRef]
- Chan, G.H.; Zhao, J.; Hicks, E.M.; Schatz, G.C.; Van Duyne, R.P. Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 2007, 7, 1947–1952. [Google Scholar] [CrossRef]
- Stebunov, Y.V.; Yakubovsky, D.I.; Fedyanin, D.Y.; Arsenin, A.V.; Volkov, V.S. Superior Sensitivity of Copper-Based Plasmonic Biosensors. Langmuir 2018, 34, 4681–4687. [Google Scholar] [CrossRef] [Green Version]
- Gattinoni, C.; Michaelides, A. Atomistic Details of Oxide Surfaces and Surface Oxidation: The Example of Copper and Its Oxides. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Ehrman, S.H.; Germer, T.A. Influence of Particle Oxide Coating on Light Scattering by Submicron Metal Particles on Silicon Wafers. Appl. Phys. Lett. 2004, 84, 1278–1280. [Google Scholar] [CrossRef]
- Boyd, R.D.; Pilch, I.; Garbrecht, M.; Halvarsson, M.; Helmersson, U. Double Oxide Shell Layer Formed on a Metal Nanoparticle as Revealed by Aberration Corrected (Scanning) Transmission Electron Microscopy. Mater. Res. Express 2014, 1, 025016. [Google Scholar] [CrossRef] [Green Version]
- Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions. J. Phys. Chem. C 2008, 112, 1101–1108. [Google Scholar] [CrossRef]
- Leon, J.J.D.; Fryauf, D.M.; Cormia, R.D.; Zhang, M.X.M.; Samuels, K.; Williams, R.S.; Kobayashi, N.P. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper. ACS Appl. Mater. Interfaces 2016, 8, 22337–22344. [Google Scholar] [CrossRef]
- De Heer, W.A. The Physics of Simple Metal Clusters: Experimental Aspects and Simple Models. Rev. Mod. Phys. 1993, 65, 611–676. [Google Scholar] [CrossRef]
- Binns, C. Nanoclusters Deposited on Surfaces. Surf. Sci. Rep. 2001, 44, 1–49. [Google Scholar] [CrossRef]
- Popok, V.N.; Kylián, O. Gas-Phase Synthesis of Functional Nanomaterials. Appl. Nano 2020, 1, 25–58. [Google Scholar] [CrossRef]
- Novikov, S.M.; Popok, V.N.; Evlyukhin, A.B.; Hanif, M.; Morgen, P.; Fiutowski, J.; Beermann, J.; Rubahn, H.-G.; Bozhevolnyi, S.I. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications. Langmuir 2017, 33, 6062–6070. [Google Scholar] [CrossRef]
- Larsen, M. Stability of Localised Surface Plasmon Resonance of Metal Nanoparticles. Master’s Thesis, Aalborg University, Aalborg, Denmark, 2019. [Google Scholar]
- Popok, V.N.; Novikov, S.M.; Lebedinskij, Y.Y.; Markeev, A.M.; Andreev, A.A.; Trunkin, I.N.; Arsenin, A.V.; Volkov, V.S. Gas-Aggregated Copper Nanoparticles with Long-Term Plasmon Resonance Stability. Plasmonics 2021, 16, 333–340. [Google Scholar] [CrossRef]
- Kim, I.; Kim, Y.; Woo, K.; Ryu, E.H.; Yon, K.Y.; Cao, G.; Moon, J. Synthesis of Oxidation-Resistant Core-Shell Copper Nanoparticles. RSC Adv. 2013, 3, 15169–15177. [Google Scholar] [CrossRef]
- Bok, S.; Lim, G.H.; Lim, B. UV/Ozone Treatment for Adhesion Improvement of Copper/Epoxy Interface. J. Ind. Eng. Chem. 2017, 46, 199–202. [Google Scholar] [CrossRef]
- Solovey, V.R.; Yakubovsky, D.I.; Ermolayev, G.A.; Lebedinskij, Y.Y.; Markeev, A.M.; Voronov, A.A.; Zamboni, F.; Popok, V.N.; Arsenin, A.V.; Volkov, V.S.; et al. UV/Ozone Treatment and Open-Air Copper Plasmonics. J. Phys. Conf. Ser. 2021, 2015, 012148. [Google Scholar] [CrossRef]
- Popok, V.N.; Gurevich, L. Charge States of Size-Selected Silver Nanoparticles Produced by Magnetron Sputtering. J. Nanopart. Res. 2019, 21, 171. [Google Scholar] [CrossRef]
- Hartmann, H.; Popok, V.N.; Barke, I.; Von Oeynhausen, V.; Meiwes-Broer, K.-H. Design and Capabilities of an Experimental Setup Based on Magnetron Sputtering for Formation and Deposition of Size-Selected Metal Clusters on Ultra-Clean Surfaces. Rev. Sci. Instrum. 2012, 83, 073304. [Google Scholar] [CrossRef]
- Poulston, S.; Parlett, P.M.; Stone, P.; Bowker, M. Surface Oxidation and Reduction of CuO and Cu2O Studied Using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Susman, M.D.; Feldman, Y.; Bendikov, T.A.; Vaskevich, A.; Rubinstein, I. Real-Time Plasmon Spectroscopy Study of the Solid-State Oxidation and Kirkendall Void Formation in Copper Nanoparticles. Nanoscale 2017, 9, 12573–12589. [Google Scholar] [CrossRef] [Green Version]
- Curry, A.; Nusz, G.; Chilkoti, A.; Wax, A. Substrate Effect on Refractive Index Dependence of Plasmon Resonance for Individual Silver Nanoparticles Observed Using Darkfield Microspectroscopy. Opt. Express 2005, 13, 2668. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. (Eds.) CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Maier, S.A. Localised Surface Plasmons. In Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007; pp. 53–64. [Google Scholar] [CrossRef]
- Malinsky, M.D.; Kelly, K.L.; Schatz, G.C.; Van Duyne, R.P. Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. J. Am. Chem. Soc. 2001, 123, 1471–1482. [Google Scholar] [CrossRef]
- Cabrera, N.; Mott, N.F. Theory of the Oxidation of Metals. Rep. Prog. Phys. 1949, 12, 163–184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamboni, F.; Makarevičiūtė, A.; Popok, V.N. Long-Term Plasmonic Stability of Copper Nanoparticles Produced by Gas-Phase Aggregation Method Followed by UV-Ozone Treatment. Appl. Nano 2022, 3, 102-111. https://doi.org/10.3390/applnano3020007
Zamboni F, Makarevičiūtė A, Popok VN. Long-Term Plasmonic Stability of Copper Nanoparticles Produced by Gas-Phase Aggregation Method Followed by UV-Ozone Treatment. Applied Nano. 2022; 3(2):102-111. https://doi.org/10.3390/applnano3020007
Chicago/Turabian StyleZamboni, Francesco, Arūnė Makarevičiūtė, and Vladimir N. Popok. 2022. "Long-Term Plasmonic Stability of Copper Nanoparticles Produced by Gas-Phase Aggregation Method Followed by UV-Ozone Treatment" Applied Nano 3, no. 2: 102-111. https://doi.org/10.3390/applnano3020007
APA StyleZamboni, F., Makarevičiūtė, A., & Popok, V. N. (2022). Long-Term Plasmonic Stability of Copper Nanoparticles Produced by Gas-Phase Aggregation Method Followed by UV-Ozone Treatment. Applied Nano, 3(2), 102-111. https://doi.org/10.3390/applnano3020007