Environment-Friendly Ascorbic Acid Fuel Cell
Abstract
:1. Introduction
2. An Overview of Ascorbic Acid
3. Catalysts for Ascorbic Acid Electrooxidation
4. Ascorbic Acid as Fuel
4.1. Acidic Fuel Cell
4.2. Alkaline Fuel Cell
4.3. Split-pH (Alkaline–Acid) Fuel Cells
- Anode: A2− = DHA + 2e−; Eanode = −0.42 V
- Cathode: H2O2 + 2H+ +2e− = 2H2O; Ecathode= +1.78 V
- Overall: A2− + H2O2 = DHA + 2H2O; Eoverall= +2.18 V
5. Challenges and Future Scope
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaman, S.; Huang, L.; Douka, A.I.; Yang, H.; You, B.; Xia, B.Y. Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angew. Chem. Int. Ed. 2021, 133, anie.202016977. [Google Scholar] [CrossRef]
- Debe, M.K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ong, B.C.; Kamarudin, S.K.; Basri, S. Direct Liquid Fuel Cells: A Review. Int. J. Hydrogen Energy 2017, 42, 10142–10157. [Google Scholar] [CrossRef]
- Basri, S.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z. Nanocatalyst for Direct Methanol Fuel Cell (DMFC). Int. J. Hydrogen Energy 2010, 35, 7957–7970. [Google Scholar] [CrossRef]
- Haan, J.L.; Stafford, K.M.; Masel, R.I. Effects of the Addition of Antimony, Tin, and Lead to Palladium Catalyst Formulations for the Direct Formic Acid Fuel Cell. J. Phys. Chem. C 2010, 114, 11665–11672. [Google Scholar] [CrossRef]
- Antolini, E. Catalysts for Direct Ethanol Fuel Cells. J. Power Sources 2007, 170, 1–12. [Google Scholar] [CrossRef]
- Ferriday, T.B.; Middleton, P.H. Alkaline Fuel Cell Technology—A Review. Int. J. Hydrogen Energy 2021, 46, 18489–18510. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rakib, R.H.; Hasnat, M.A.; Nagao, Y. Electroless Deposition of Silver Dendrite Nanostructure onto Glassy Carbon Electrode and Its Electrocatalytic Activity for Ascorbic Acid Oxidation. ACS Appl. Energy Mater. 2020, 3, 2907–2915. [Google Scholar] [CrossRef]
- Hasan, M.M.; Nagao, Y. Christmas-Tree-Shaped Palladium Nanostructures Decorated on Glassy Carbon Electrode for Ascorbic Acid Oxidation in Alkaline Condition. ChemistrySelect 2021, 6, 5885–5892. [Google Scholar] [CrossRef]
- Cathcart, R.F. A Unique Function for Ascorbate. Med. Hypotheses 1991, 35, 32–37. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Serban, A.I.; Fafaneata, C. Electrochemical Methods for Ascorbic Acid Determination. Electrochim. Acta 2014, 121, 443–460. [Google Scholar] [CrossRef]
- Prieto, F.; Coles, B.A.; Compton, R.G. Mechanistic Determination Using Arrays of Variable-Sized Channel Microband Electrodes: The Oxidation of Ascorbic Acid in Aqueous Solution. J. Phys. Chem. B 1998, 102, 7442–7447. [Google Scholar] [CrossRef]
- Rueda, M.; Aldaz, A.; Sanchez-Burgos, F. Oxidation of L-Ascorbic Acid on a Gold Electrode. Electrochim. Acta 1978, 23, 419–424. [Google Scholar] [CrossRef]
- Hu, I.F.; Kuwana, T. Oxidative Mechanism of Ascorbic Acid at Glassy Carbon Electrodes. Anal. Chem. 1986, 58, 3235–3239. [Google Scholar] [CrossRef]
- Tu, Y.J.; Njus, D.; Schlegel, H.B. A Theoretical Study of Ascorbic Acid Oxidation and HOO˙/O2˙− Radical Scavenging. Org. Biomol. Chem. 2017, 15, 4417–4431. [Google Scholar] [CrossRef]
- Dhara, K.; Debiprosad, R.M. Review on Nanomaterials-Enabled Electrochemical Sensors for Ascorbic Acid Detection. Anal. Biochem. 2019, 586, 113415. [Google Scholar] [CrossRef]
- Kuss, S.; Compton, R.G. Electrocatalytic Detection of Ascorbic Acid Using N,N,N′,N′-Tetramethyl-Para-Phenylene-Diamine (TMPD) Mediated Oxidation at Unmodified Gold Electrodes; Reaction Mechanism and Analytical Application. Electrochim. Acta 2017, 242, 19–24. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; He, W.; Uyama, H.; Xie, Q.; Zhang, L.; Yang, F. Electrochemical Sensor Based on Carbon-Supported NiCoO2 Nanoparticles for Selective Detection of Ascorbic Acid. Biosens. Bioelectron. 2014, 55, 446–451. [Google Scholar] [CrossRef]
- Xi, L.; Ren, D.; Luo, J.; Zhu, Y. Electrochemical Analysis of Ascorbic Acid Using Copper Nanoparticles/Polyaniline Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2010, 650, 127–134. [Google Scholar] [CrossRef]
- Raoof, J.B.; Ojani, R.; Baghayeri, M. A Selective Sensor Based on a Glassy Carbon Electrode Modified with Carbon Nanotubes and Ruthenium Oxide/Hexacyanoferrate Film for Simultaneous Determination of Ascorbic Acid, Epinephrine and Uric Acid. Anal. Methods 2011, 3, 2367. [Google Scholar] [CrossRef]
- Lee, Y.G.; Liao, B.X.; Weng, Y.C. Ruthenium Oxide Modified Nickel Electrode for Ascorbic Acid Detection. Chemosphere 2017, 173, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, S.; Chen, S. Preparation and Characterization of PtAu Hybrid Film Modified Electrodes and Their Use in Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid. Talanta 2007, 74, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, G.; Tian, K.; Xu, C. A Highly Sensitive and Stable Electrochemical Sensor for Simultaneous Detection towards Ascorbic Acid, Dopamine, and Uric Acid Based on the Hierarchical Nanoporous PtTi Alloy. Biosens. Bioelectron. 2016, 82, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Bae, I.T.; Shao, M.; Liu, C.C. Electro-Oxidation of l-Ascorbic Acid on Platinum in Acid Solutions: An In-Situ FTIRRAS Study. J. Electroanal. Chem. 1993, 346, 309–321. [Google Scholar] [CrossRef]
- Oko, D.N.; Garbarino, S.; Zhang, J.; Xu, Z.; Chaker, M.; Ma, D.; Guay, D.; Tavares, A.C. Dopamine and Ascorbic Acid Electro-Oxidation on Au, AuPt and Pt Nanoparticles Prepared by Pulse Laser Ablation in Water. Electrochim. Acta 2015, 159, 174–183. [Google Scholar] [CrossRef]
- Islam, M.T.; Hasan, M.M.; Shabik, M.F.; Islam, F.; Nagao, Y.; Hasnat, M.A. Electroless Deposition of Gold Nanoparticles on a Glassy Carbon Surface to Attain Methylene Blue Degradation via Oxygen Reduction Reactions. Electrochim. Acta 2020, 360, 136966. [Google Scholar] [CrossRef]
- Raj, C.R.; Ohsaka, T. Electroanalysis of Ascorbate and Dopamine at a Gold Electrode Modified with a Positively Charged Self-Assembled Monolayer. J. Electroanal. Chem. 2001, 496, 44–49. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Saldaña-Botín, A.; Arcos-Martínez, M.J. Determination of Ascorbic Acid in Serum Samples by Screen-Printed Carbon Electrodes Modified with Gold Nanoparticles. Talanta 2017, 174, 733–737. [Google Scholar] [CrossRef]
- Wu, G.; Wu, Y.; Liu, X.; Rong, M.; Chen, X.; Chen, X. An Electrochemical Ascorbic Acid Sensor Based on Palladium Nanoparticles Supported on Graphene Oxide. Anal. Chim. Acta 2012, 745, 33–37. [Google Scholar] [CrossRef]
- Jiang, J.; Du, X. Sensitive Electrochemical Sensors for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid Based on Au@Pd-Reduced Graphene Oxide Nanocomposites. Nanoscale 2014, 6, 11303–11309. [Google Scholar] [CrossRef]
- Noroozifar, M.; Khorasani-Motlagh, M.; Taheri, A. Preparation of Silver Hexacyanoferrate Nanoparticles and Its Application for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta 2010, 80, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Majari Kasmaee, L.; Gobal, F. A Preliminary Study of the Electro-Oxidation of l-Ascorbic Acid on Polycrystalline Silver in Alkaline Solution. J. Power Sources 2010, 195, 165–169. [Google Scholar] [CrossRef]
- Khalilzadeh, M.A.; Borzoo, M. Green Synthesis of Silver Nanoparticles Using Onion Extract and Their Application for the Preparation of a Modified Electrode for Determination of Ascorbic Acid. J. Food Drug Anal. 2016, 24, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Gobal, F.; Majari Kasmaee, L. Silver Selenide as a Potential Electro-Catalyst for l-Ascorbic Acid Electro-Oxidation in Alkaline Solution. Electrocatalysis 2011, 2, 331–336. [Google Scholar] [CrossRef]
- Harraz, F.A.; Faisal, M.; Al-Salami, A.E.; El-Toni, A.M.; Almadiy, A.A.; Al-Sayari, S.A.; Al-Assiri, M.S. Silver Nanoparticles Decorated Stain-Etched Mesoporous Silicon for Sensitive, Selective Detection of Ascorbic Acid. Mater. Lett. 2019, 234, 96–100. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Nezhad, M.R.H.; Khodavesi, J.; Javadi, S. Silver Nanoparticles Modified Carbon Nanotube Paste Electrode for Simultaneous Determination of Dopamine and Ascorbic Acid. J. Electroanal. Chem. 2009, 633, 85–91. [Google Scholar] [CrossRef]
- Muneeb, O.; Do, E.; Boyd, D.; Perez, J.; Haan, J.L. PdCu/C Anode Catalysts for the Alkaline Ascorbate Fuel Cell. Appl. Energy 2019, 235, 473–479. [Google Scholar] [CrossRef]
- Uhm, S.; Choi, J.; Chung, S.T.; Lee, J. Electrochemically Oxidized Carbon Anode in Direct L-Ascorbic Acid Fuel Cells. Electrochim. Acta 2007, 53, 1731–1736. [Google Scholar] [CrossRef]
- Choun, M.; Lee, H.J.; Lee, J. Positively Charged Carbon Electrocatalyst for Enhanced Power Performance of L-Ascorbic Acid Fuel Cells. J. Energy Chem. 2016, 25, 793–797. [Google Scholar] [CrossRef]
- Sathe, B.R. A Scalable and Facile Synthesis of Carbon Nanospheres as a Metal Free Electrocatalyst for Oxidation of l -Ascorbic Acid: Alternate Fuel for Direct Oxidation Fuel Cells. J. Electroanal. Chem. 2017, 799, 609–616. [Google Scholar] [CrossRef]
- Muneeb, O.; Chino, I.; Saenz, A.; Haan, J.L. An Ascorbate Fuel Cell with Carbon Black Nanoparticles as Anode and Cathode. J. Power Sources 2019, 413, 216–221. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, K.; Xiang, L.; Lin, Y.; Su, L.; Mao, L. Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Anal. Chem. 2007, 79, 6559–6565. [Google Scholar] [CrossRef]
- Qiu, C.; Chen, H.; Liu, H.; Zhai, Z.; Qin, J.; Lv, Y.; Gao, Z.; Song, Y. The Hydrophilicity of Carbon for the Performance Enhancement of Direct Ascorbic Acid Fuel Cells. Int. J. Hydrogen Energy 2018, 43, 21908–21917. [Google Scholar] [CrossRef]
- Fujiwara, N.; Yamazaki, S.; Siroma, Z.; Ioroi, T.; Yasuda, K. Direct Oxidation of L-Ascorbic Acid on a Carbon Black Electrode in Acidic Media and Polymer Electrolyte Fuel Cells. Electrochem. Commun. 2006, 8, 720–724. [Google Scholar] [CrossRef]
- Fujiwara, N.; Yamazaki, S.; Siroma, Z.; Ioroi, T.; Yasuda, K. L-Ascorbic Acid as an Alternative Fuel for Direct Oxidation Fuel Cells. J. Power Sources 2007, 167, 32–38. [Google Scholar] [CrossRef]
- Fujiwara, N.; Siroma, Z.; Ioroi, T.; Yasuda, K. Rapid Evaluation of the Electrooxidation of Fuel Compounds with a Multiple-Electrode Setup for Direct Polymer Electrolyte Fuel Cells. J. Power Sources 2007, 164, 457–463. [Google Scholar] [CrossRef]
- Fujiwara, N.; Yasuda, K.; Ioroi, T.; Siroma, Z.; Miyazaki, Y.; Kobayashi, T. Direct Polymer Electrolyte Fuel Cells Using L-Ascorbic Acid as a Fuel. Electrochem. Solid-State Lett. 2003, 6, A257. [Google Scholar] [CrossRef]
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic Acid: Chemistry, Biology and the Treatment of Cancer. Biochim. Biophys. Acta Rev. Cancer 2012, 1826, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Mogi, H.; Fukushi, Y.; Koide, S.; Sano, R.; Sasaki, T.; Nishioka, Y. A Flexible Ascorbic Acid Fuel Cell with a Microchannel Fabricated Using MEMS Techniques. J. Phys. Conf. Ser. 2013, 476, 012065. [Google Scholar] [CrossRef]
- Falk, M.; Andoralov, V.; Blum, Z.; Sotres, J.; Suyatin, D.B.; Ruzgas, T.; Arnebrant, T.; Shleev, S. Biofuel Cell as a Power Source for Electronic Contact Lenses. Biosens. Bioelectron. 2012, 37, 38–45. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, Z.; Ying, Y.; Chan, P.C.H. Development of a Miniature Silicon Wafer Fuel Cell Using L-Ascorbic Acid as Fuel. J. Zhejiang Univ. A 2008, 9, 955–960. [Google Scholar] [CrossRef]
- Kaneto, K.; Nishikawa, M.; Uto, S. Characteristics of Ascorbic Acid Fuel Cells Using SWCNT and PEDOTPSS Composite Anodes. Chem. Lett. 2019, 48, 1533–1536. [Google Scholar] [CrossRef]
- Bianchini, C.; Shen, P.K. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev. 2009, 109, 4183–4206. [Google Scholar] [CrossRef] [PubMed]
- Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P.B. Self-Supported PdxBi Catalysts for the Electrooxidation of Glycerol in Alkaline Media. J. Am. Chem. Soc. 2014, 136, 3937–3945. [Google Scholar] [CrossRef]
- Muneeb, O.; Do, E.; Tran, T.; Boyd, D.; Huynh, M.; Ghosn, G.; Haan, J.L. A Direct Ascorbate Fuel Cell with an Anion Exchange Membrane. J. Power Sources 2017, 351, 74–78. [Google Scholar] [CrossRef]
- An, L.; Zhao, T.S.; Chen, R.; Wu, Q.X. A Novel Direct Ethanol Fuel Cell with High Power Density. J. Power Sources 2011, 196, 6219–6222. [Google Scholar] [CrossRef]
- Shang, Z.; Wycisk, R.; Pintauro, P. Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells. Energies 2021, 14, 6709. [Google Scholar] [CrossRef]
- Pan, Z.; Zhuang, H.; Bi, Y.; An, L. A Direct Ethylene Glycol Fuel Cell Stack as Air-Independent Power Sources for Underwater and Outer Space Applications. J. Power Sources 2019, 437, 226944. [Google Scholar] [CrossRef]
- Keramati, A.; Hendrix, K.; Nguyen, D.; Gonzales, F.; Waters, K.; Fry-Petit, A.; Haan, J.L. A Non-Precious Metal Ascorbate Fuel Cell. Int. J. Energy Res. 2021, 45, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; He, Y.; Liu, Y.; Jin, L. Performance of Direct Formate-Peroxide Fuel Cells. J. Power Sources 2015, 287, 75–80. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Sun, X.; He, Y. A Sodium-Ion-Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base. Angew. Chem. Int. Ed. 2017, 56, 5734–5737. [Google Scholar] [CrossRef]
- Mondal, S.K.; Raman, R.K.; Shukla, A.K.; Munichandraiah, N. Electrooxidation of Ascorbic Acid on Polyaniline and Its Implications to Fuel Cells. J. Power Sources 2005, 145, 16–20. [Google Scholar] [CrossRef]
Anode (Catalyst Loading) | Anode Fuel | Flow (mL/min) | Cathode (Catalyst Loading) | Cathode Fuel | Flow (mL/min) | Membrane | Temp. (°C) | Peak Power Density (mW/cm2) | Current Density (mA/cm2) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Acid-treated Vulcan XC-72 (2 mg/cm2) | 1 M AA and 1 M NaOH | 2 | Acid-treated Vulcan XC-72 (2 mg/cm2) | 30% H2O2 and 1 M H2SO4 | 5 | NaOH treated Nafion 115 CEM | 60 | 158 | ~475 | [41] |
PdCu/C (2 mg/cm2) | 1 M AA and 1 M KOH | 1 | Pt black (4 mg/cm2) | O2 | 100 | Tokuyama A201 AEM | 60 | 89 | ~560 | [37] |
Pd catalyst (4 mg/cm2) | 1 M AA and 1 M KOH | 5 | Pt black (2 mg/cm2) | O2 | 100 | Tokuyama A201 AEM | 60 | 73 | 497 | [55] |
Cu/C (5 mg/cm2) | 1 M AA and 2 M NaOH | 1 | Carbon (5 mg/cm2) | 3% H2O2 and 1 M H2SO4 | 2 | NaOH treated Nafion 115 CEM | 60 | 51 | ~240 | [59] |
Acid treated carbon (1 mg/cm2) | 1 mM AA + 0.5 M H2SO4 | 15 | Pt/C (1 mg/cm2) | O2 | 200 | Nafion 211 | 80 | 31 | ~180 | [43] |
Oxidized Carbon (SGL 35AA) (no metal loading) | 1 M AA | 5 | Pt on Carbon (SGL 35BC GDL) (3 mg/cm2) | O2 | 200 | Nafion 115 CEM | 60 | 18 | ~90 | [38] |
Vulcan XC72 on PTFE sheet (3 mg/cm2) | 0.5 M AA | 4 | Pt black on PTFE sheet (3 mg/cm2) | O2 | 100 | Nafion 117 CEM | 25 | 16 | ~115 | [45] |
Vulcan XC72 (0.3 mg/cm2) | 0. 5 M AA + 0.5 M H2SO4 | 4 | Pt–PTFE black (3 mg/cm2) | O2 | 100 | Nafion-117 CEM | 25 | 15 | ~85 | [44] |
aSWCNT@PEDOT*PSS (1 mg/cm2) | 0.5 M AA | 2 | Pt black (3 mg/cm2) | O2 | 100 | Nafion 117 CEM | 25 | 11.3 | ~60 | [52] |
Poly aniline on TGPH 090 (35 mg/cm2) | 1 M AA in 0.5 M H2SO4 | - | Pt on TGPH 090 (no information) | O2 | - | Nafion 117 CEM | 70 | 4.3 | 15 | [62] |
Acid treated Carbon on Toray-060 (1 mg/cm2) | 0.5 M AA | 4 | Pt/C on (SGL, 10BC) (1 mg/cm2) | O2 | 100 | Nafion 115 CEM | 36.5 | ~0.053 | ~0.66 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M. Environment-Friendly Ascorbic Acid Fuel Cell. Electrochem 2023, 4, 31-41. https://doi.org/10.3390/electrochem4010003
Hasan MM. Environment-Friendly Ascorbic Acid Fuel Cell. Electrochem. 2023; 4(1):31-41. https://doi.org/10.3390/electrochem4010003
Chicago/Turabian StyleHasan, Md. Mahmudul. 2023. "Environment-Friendly Ascorbic Acid Fuel Cell" Electrochem 4, no. 1: 31-41. https://doi.org/10.3390/electrochem4010003
APA StyleHasan, M. M. (2023). Environment-Friendly Ascorbic Acid Fuel Cell. Electrochem, 4(1), 31-41. https://doi.org/10.3390/electrochem4010003