Lab-on-a-Chip Electrochemical Immunosensor Array Integrated with Microfluidics: Development and Characterisation
Abstract
:1. Introduction
2. Methodology
2.1. Reagents
2.2. Instrumentation
2.3. Preparation of the Gold Chip
2.4. Modification of the Gold Chip
2.5. Immuonassay
2.6. Cyclic Voltammetry
2.7. Contact Angle Measurements
2.8. Amperometric Detection
3. Results and Discussion
3.1. Stability of the Gold Chip
3.2. Electrochemical Characterisation of the Modified Chip
3.3. Evaluation of Microfluidic Channel
3.4. Real-Time Analysis in the Microfluidics Channel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Burchiel, S.W.; Luster, M.I. Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin. Immuno. 2001, 98, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Molaei, S.; Saleh, A.; Ghoulipour, V.; Seidi, S. Centrifuge-less Emulsification Microextraction Using Effervescent CO2 Tablet for On-site Extraction of PAHs in Water Samples Prior to GC–MS Detection. Chromatographia 2016, 79, 629–640. [Google Scholar] [CrossRef]
- Wang, W.; Ma, R.; Wu, Q.; Wang, C.; Wang, Z. Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography—Fluorescence analysis. J. Chromat. A 2013, 1293, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Gilgenast, E.; Boczkaj, G.; Przyjazny, A.; Kamiński, M. Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen. Anal Bioanal Chem. 2011, 401, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Zachariadis, G.A. Recent Advances in the Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Molecules 2020, 25, 2182. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, Z. A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, and its hyphenation to HPLC for quantitation. Microchim. Acta 2017, 184, 3867–3874. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Rokhian, T.; Amiri, A.; Ghaemi, F. Carbon nanofibers decorated with magnetic nanoparticles as a new sorbent for the magnetic solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples. New J. Chem. 2015, 39, 5621–5627. [Google Scholar] [CrossRef]
- Galán-Cano, F.; Del Carmen Alcudia-León, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Ionic liquid coated magnetic nanoparticles for the gas chromatography/mass spectrometric determination of polycyclic aromatic hydrocarbons in waters. J. Chromatogr. A 2013, 1300, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Foan, L.J.; El Sabahy, F.; Ricoul, B.; Bourlon, S. Vignoud, Development of a new phase for lab-on-a-chip extraction of polycyclic aromatic hydrocarbons from water. Sens. Actuators B Chem. 2018, 255, 1039–1047. [Google Scholar] [CrossRef]
- Kim, D.; Herr, A. Protein immobilization techniques for microfluidic assays. Biomicrofluidics 2013, 7, 041501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricoul, F.; Pelisson, R.; Fain, B.; Vignoud, S. Integrated System for the Rapid Polycyclic Aromatic Hydrocarbons Extraction from Aqueous Samples and Their Consecutive Thermal Desorption Prior to Gas Chromatography Analysis. Am. J. Anal. Chem. 2020, 11, 75–89. [Google Scholar] [CrossRef]
- Cooper, M.A. Non-optical screening platforms: The next wave in label-free screening? Drug Discov. Today 2006, 11, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Pfau, D.; Greffrath, W.; Schilder, A.; Magerl, W.; Ohler, C.; Westermann, A.; Maier, C.; Doppler, K.; Sommer, C.; Orth, M.; et al. Technical and clinical performance of the thermo-test device “Q-Sense” to assess small fibre function: A head-to-head comparison with the “Thermal Sensory Analyzer” TSA in diabetic patients and healthy volunteers. Eur. J. Pain 2019, 23, 1863–1878. [Google Scholar] [CrossRef] [PubMed]
- Naughton, F.; Hopewell, S.; Lathia, N.; Schalbroeck, R.; Brown, C.; Mascolo, C.; McEwen, A.; Sutton, S. A Context-Sensing Mobile Phone App (Q Sense) for Smoking Cessation: A Mixed-Methods Study. JMIR Mhealth Uhealth 2016, 4, e106. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Moore, E.J. Comparison of cell-based biosensors with traditional analytical techniques for cytotoxicity monitoring and screening of polycyclic aromatic hydrocarbons in the environment. Anal. Lett. 2009, 42, 1–28. [Google Scholar] [CrossRef]
- Alsefri, S.; Balbaied, T.; Moore, E. Electrochemical Development of an Immunosensor for Detection Polychlorinated biphenyls (PCBs) for Environmental Analysis. Chemosensors 2021, 9, 307. [Google Scholar] [CrossRef]
- Balbaied, T.; Hogan, A.; Moore, E. Electrochemical Detection and Capillary Electrophoresis: Comparative Studies for Alkaline Phosphatase (ALP) Release from Living Cells. Biosensors 2020, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Southworth, G.R. The role of volatilization in removing polcyclic aromatic hydrocarbons from aquatic environments. Bull. Environ. Contam. Toxicol. 1979, 21, 507–514. [Google Scholar] [CrossRef] [PubMed]
Scan Rate | Emid vs. Ag/AgCl a | ∆Ep (mV) b | Epa (mV/s) c |
---|---|---|---|
5 | 122 | 228 | 230 |
10 | 132 | 256 | 260 |
20 | 161 | 318 | 320 |
50 | 210 | 340 | 350 |
100 | 239 | 282 | 380 |
150 | 285 | 290 | 430 |
200 | 296 | 288 | 440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felemban, S.; Vazquez, P.; Balbaied, T.; Moore, E. Lab-on-a-Chip Electrochemical Immunosensor Array Integrated with Microfluidics: Development and Characterisation. Electrochem 2022, 3, 570-580. https://doi.org/10.3390/electrochem3040039
Felemban S, Vazquez P, Balbaied T, Moore E. Lab-on-a-Chip Electrochemical Immunosensor Array Integrated with Microfluidics: Development and Characterisation. Electrochem. 2022; 3(4):570-580. https://doi.org/10.3390/electrochem3040039
Chicago/Turabian StyleFelemban, Shifa, Patricia Vazquez, Thanih Balbaied, and Eric Moore. 2022. "Lab-on-a-Chip Electrochemical Immunosensor Array Integrated with Microfluidics: Development and Characterisation" Electrochem 3, no. 4: 570-580. https://doi.org/10.3390/electrochem3040039
APA StyleFelemban, S., Vazquez, P., Balbaied, T., & Moore, E. (2022). Lab-on-a-Chip Electrochemical Immunosensor Array Integrated with Microfluidics: Development and Characterisation. Electrochem, 3(4), 570-580. https://doi.org/10.3390/electrochem3040039