Effect of Cr Content on Corrosion Resistance of Low-Cr Alloy Steels Studied by Surface and Electrochemical Techniques
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Electrochemical Measurements
2.3. Chemical and Morphological Characterization
3. Results and Discussion
3.1. Electrochemical Behavior of Pure Iron and Fe-Cr Alloys in 0.1 M Na2SO4 Solution
3.1.1. Electrochemical Behavior of Iron
3.1.2. Electrochemical Behavior of Binary Fe-Cr Alloys
3.2. Morphological and Chemical Characterization of Binary Fe-Cr Alloys before and after Electrochemical Test
3.2.1. Morphological Characterization
3.2.2. AES and XPS Analysis of Surface Layer of Binary Fe-Cr Alloys
3.2.3. ToF-SIMS—Surface and Bulk Modifications Layers Formed on the Binary Fe-Cr Alloys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brownlie, F.; Hodgkiess, T.; Pearson, A.; Galloway, A.M. A study on the erosion-corrosion behaviour of engineering materials used in the geothermal industry. Wear 2021, 477, 203821. [Google Scholar] [CrossRef]
- Sun, M.; Du, C.; Liu, Z.; Liu, C.; Li, X.; Wu, Y. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere. Corros. Sci. 2021, 186, 109427. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.; Li, Y.; Lv, X. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment. Constr. Build. Mater. 2021, 277, 122298. [Google Scholar] [CrossRef]
- Banaś, J.; Górecki, W.; Kurzydłowski, K.; Mazurkiewicz, B.; Pawlikowski, M.; Rożniatowski, K.; Solarski, W. Research in Polish Metallurgy at the Beginning of XXI Century; Świątkowski, K., Ed.; Publishing House “Akapit”: Kraków, Poland, 2006. [Google Scholar]
- Banaś, J.; Lelek-Borkowska, U.; Mazurkiewicz, B.; Solarski, W. Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water. Electrochim. Acta 2007, 52, 5704–5714. [Google Scholar] [CrossRef]
- Banaś, J.; Pawlikowski, M.; Górecki, W.; Kurzydłowski, K. Atlas of Geothermal Mesosoic Formation at Polish Lowland; Górecki, W., Ed.; AGH: Kraków, Poland, 2006. [Google Scholar]
- Łukaszczyk, A.; Mazurkiewicz, B.; Solarski, W.; Banaś, J. Wpływ CO2 oraz temperatury na własności anodowe żelaza w wodzie termalnej. Ochr. Przed Korozją 2006, 49, 203–207. [Google Scholar]
- Banaś, J.; Mazurkiewicz, B.; Solarski, W. Elektrochemiczne badania korozyjne w instalacjach geotermalnych. Przegląd Geol. 2009, 57, 664–666. [Google Scholar]
- Ueda, M.; Ikeda, A. Effect of microstructure and Cr content in steel on CO2 corrosion. In Proceedings of the Corrosion 96 Conference, Denver, CO, USA, 24–29 March 1996. Paper 13. [Google Scholar]
- Hua, Y.; Mohammed, S.; Barker, R.; Neville, A. Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2-saturated brine. J. Mater. Sci. Technol. 2020, 41, 21–32. [Google Scholar] [CrossRef]
- Banaś, J.; Łukaszczyk, A.; Mazurkiewicz, B.; Solarski, W. Mechanizm i kinetyka korozji w układzie H2O-NaCl-CO2-H2S. Badania w warunkach laboratoryjnych i w polskich instalacjach geotermalnych. Ochr. Przed Korozją 2010, 3, 94–105. [Google Scholar]
- Hedayat, A.; Yannacopoulos, S.; Postlethwaite, J. Wear and CO2 corrosion of steel couplings and tubing in heavy oil screw-pump wells. Wear 1997, 209, 263–273. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Steward, F.R. Corrosion of carbon steels in high-temperature water studied by electrochemical techniques. Corros. Sci. 2004, 46, 2405–2420. [Google Scholar] [CrossRef]
- Xu, L.; Wang, B.; Zhu, J.; Li, W.; Zheng, Z. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment. Appl. Surf. Sci. 2016, 379, 39–46. [Google Scholar] [CrossRef]
- Sun, B.; Zuo, X.; Cheng, X.; Li, X. The role of chromium content in the long-term atmospheric corrosion process. NPJ Mater. Degrad. 2020, 4, 37. [Google Scholar] [CrossRef]
- Sun, J.; Sun, C.; Wang, Y. Effect of Cr Content on the Electrochemical Behavior of Low chromium X65 Steel in CO2 Environment. Int. J. Electrochem. Sci. 2016, 11, 8599–8611. [Google Scholar] [CrossRef]
- Hamm, D.; Olsson, C.O.A.; Landolt, D. Effect of chromium content and sweep rate on passive film growth on iron–chromium alloys studied by EQCM and XPS. Corros. Sci. 2002, 44, 1009–1025. [Google Scholar] [CrossRef]
- Hubschmid, C.; Landolt, D.; Mathieu, H.J. XPS and AES analysis of passive films on Fe-25Cr-X (X = Mo, V, Si and Nb) model alloys. J. Anal. Chem. 1995, 353, 234–239. [Google Scholar]
- Kolotyrkin, Y.M. Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys; National Association of Corrosion Engineers: Houston, TX, USA, 1977; p. 946. [Google Scholar]
- Lizlovs, E.A.; Bond, A.P. Anodic polarization behavior of high purity 13 and 18% cr stainless steels. J. Electrochem. Soc. 1975, 122, 719–722. [Google Scholar] [CrossRef]
- Marcus, P. The role of alloyed elements and adsorbed impurities in passivation of metal-surfaces. J. Chim. Phys. 1991, 88, 1697–1711. [Google Scholar] [CrossRef]
- Yang, W.P.; Costa, D.; Marcus, P. Chemical Composition, Chemical states, and resistance to localized corrosion of passive films on an Fe-17%Cr alloy. J. Electrochem. Soc. 1994, 141, 111–116. [Google Scholar] [CrossRef]
- Massoud, T.; Maurice, V.; Klein, L.H.; Marcus, P. Nanoscale morphology and atomic structure of passive films on stainless steel. J. Electrochem. Soc. 2013, 160, C232–C238. [Google Scholar] [CrossRef]
- Monnartz, P. Beitrag zum Studium der Eisenchromlegierungen unter besonderer Berücksichtigung der Säurebeständigkeit. Metallurgie 1911, 8, 161–170, 193–201. [Google Scholar]
- Diawara, B.; Beh, Y.A.; Marcus, P. Nucleation and growth of oxide layers on stainless steels (FeCr) using a virtual oxide layer model. J. Phys. Chem. C 2010, 114, 19299–19307. [Google Scholar] [CrossRef]
- Legrand, M.; Diawara, B.; Legendre, J.J.; Marcus, P. Three-dimensional modelling of selective dissolution and passivation of iron–chromium alloys. Corros. Soc. 2002, 44, 773–790. [Google Scholar] [CrossRef]
- Diawara, B.; Legrand, M.; Legendre, J.J.; Marcus, P. Use of quantum chemistry results in 3D modeling of corrosion of iron-chromium alloys. J. Electrochem. Soc. 2004, 151, B172–B178. [Google Scholar] [CrossRef]
- Keller, P.; Strehblow, H.H. XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4. Corros. Sci. 2004, 46, 1939–1952. [Google Scholar] [CrossRef]
- Inaba, H.; Kimura, M.; Yokokawa, H. An analysis of the corrosion resistance of low chromium-steel in a wet CO2 environment by the use of an electrochemical potential diagram. Corros. Sci. 1996, 38, 1449–1461. [Google Scholar] [CrossRef]
- Marcus, P. Surface science approach of corrosion phenomena. Electrochim. Acta 1998, 43, 109–118. [Google Scholar] [CrossRef]
- Heusler, K.E.; Kusian, B.; MCPhail, D. Kinetics of the Corrosion of Iron in Aqueous Electrolytes at Temperatures up to 300 °C. Ber. Bunsenges. Phys. Chem. 1990, 94, 1443–1449. [Google Scholar] [CrossRef]
- Sato, N.; Kudo, K.; Noda, T. The anodic oxide film on iron in neutral solution. Electrochim. Acta 1971, 16, 1909–1921. [Google Scholar] [CrossRef] [Green Version]
- Sato, N.; Kudo, K.; Nishimura, R. Depth Analysis of Passive Films on Iron in Neutral Borate Solution. J. Electrochem. Soc. 1976, 123, 1419–1423. [Google Scholar] [CrossRef]
- Bessone, J.; Karakaya, L.; Lorbeer, P.; Lorenc, W.J. The kinetics of iron dissolution and passivation. Electrochim. Acta 1977, 22, 1147–1154. [Google Scholar] [CrossRef]
- Bard, A.; Faulkner, L. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal Chem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Lorenz, W.J.; Heusler, K.E. Corrosion Mechanisms; Mansfeld, F., Dekker, M., Eds.; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Langmuir, I. The pressure effect and other phenomena in gaseous discharges. J. Frankl. Inst. 1923, 196, 751–762. [Google Scholar] [CrossRef]
- Deroubaix, G.; Marcus, P. X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surf. Interface Anal. 1992, 18, 39–46. [Google Scholar] [CrossRef]
- Barr, T.L.; Hackenberg, J.J. Studies of the low temperature oxidation of alloys by X-ray photoelectron spectroscopy: Cu–Zn. Appl. Surf. Sci. 1982, 10, 523–545. [Google Scholar] [CrossRef]
- Dake, L.S.; Baer, D.R.; Zachara, J.M. Auger parameter measurements of zinc compounds relevant to zinc transport in the environment. Surf. Interface Anal. 1989, 14, 71–75. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, M.D. High. Resolution XPS Spectra of Organic Polymers; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Mohapatra, J.N.; Panda, A.K.; Gunjan, M.K.; Bandyopadhyay, N.R.; Mitra, A.; Ghosh, R.N. Ageing behavior study of 5Cr–0.5 Mo steel by magnetic Barkhausen emissions and magnetic hysteresis loop techniques. NDTE Int. 2007, 40, 173–178. [Google Scholar] [CrossRef]
- Gupta, R.P.; Sen, S.K. Calculation of multiplet structure of core p-vacancy levels. Phys. Rev. B 1974, 10, 71–77. [Google Scholar] [CrossRef]
- Gupta, R.P.; Sen, S.K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B 1975, 12, 15–19. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Furlani, A.; Russo, M.V.; Polzonetti, G.; Martin, K.; Wang, H.H.; Ferraro, J.R. Spectroscopic studies of FeCl3-doped polymers of polyphenylacetylene. Appl. Spectrosc. 1990, 44, 331–334. [Google Scholar] [CrossRef]
- Maurice, V.; Cadot, S.; Marcus, P. Hydroxylation of ultra-thin films of α-Cr2O3(0001) formed on Cr(110). Surf. Sci. 2001, 471, 43–58. [Google Scholar] [CrossRef]
- Oku, M.; Suzuki, S.; Ohtsu, N.; Shishido, T.; Wagatsuma, K. Comparison of intrinsic zero-energy loss and Shirley-type background corrected profiles of XPS spectra for quantitative surface analysis: Study of Cr, Mn, and Fe oxides. Appl. Surf. Sci. 2008, 254, 5141–5148. [Google Scholar] [CrossRef]
- Pratt, A.R.; McIntyre, N.S. Comment on ‘curve fitting of Cr 2p photoelectron spectra of Cr2O3 and CrF3. Surf. Interface Anal. 1996, 24, 529–530. [Google Scholar] [CrossRef]
- Chambers, S.A.; Droubay, T. Role of oxide ionicity in electronic screening at oxide/metal interfaces. Phys. Rev. B 2001, 64, 075410. [Google Scholar] [CrossRef]
- Ünveren, E.; Kemnitz, E.; Hutton, S.; Lippitz, A.; Unger, W.E.S. Analysis of highly resolved x-ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape. Surf. Interface Anal. 2004, 36, 92–95. [Google Scholar] [CrossRef]
- Asami, K.; Hashimoto, K. An XPS study of the passivity of a series of iron- chromium alloys in sulfuric acid. Corros. Sci. 1978, 18, 151–160. [Google Scholar] [CrossRef]
- Brüesch, P.; Müller, M.; Atrens, A.; Neff, H. Corrosion of stainless steels in chloride solution: An XPS investigation of passive films. Appl. Phys. A 1985, 38, 1–18. [Google Scholar] [CrossRef]
- Kirchheim, R.; Heine, B.; Fischmeister, H.; Hofmann, S.; Knote, H.; Stolz, U. The passivity of iron-chromium alloys. Corros. Sci. 1989, 29, 899–917. [Google Scholar] [CrossRef]
Alloy | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | Annealing Time |
---|---|---|---|---|---|---|---|---|---|---|
Fe-1% Cr | 0.03 | 0.01 | 0.131 | 0.012 | 0.011 | 0.87 | 0.019 | <0.0007 | 0.0420 | 2 h |
Fe-3% Cr | 0.03 | 0.01 | 0.132 | 0.013 | 0.012 | 2.80 | 0.018 | <0.0007 | 0.0366 | 50 h |
Fe-5% Cr | 0.03 | 0.03 | 0.126 | 0.021 | 0.015 | 5.16 | 0.020 | <0.0012 | 0.0314 | 100 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukaszczyk, A.; Banaś, J.; Pisarek, M.; Seyeux, A.; Marcus, P.; Światowska, J. Effect of Cr Content on Corrosion Resistance of Low-Cr Alloy Steels Studied by Surface and Electrochemical Techniques. Electrochem 2021, 2, 546-562. https://doi.org/10.3390/electrochem2040035
Łukaszczyk A, Banaś J, Pisarek M, Seyeux A, Marcus P, Światowska J. Effect of Cr Content on Corrosion Resistance of Low-Cr Alloy Steels Studied by Surface and Electrochemical Techniques. Electrochem. 2021; 2(4):546-562. https://doi.org/10.3390/electrochem2040035
Chicago/Turabian StyleŁukaszczyk, Alicja, Jacek Banaś, Marcin Pisarek, Antoine Seyeux, Philippe Marcus, and Jolanta Światowska. 2021. "Effect of Cr Content on Corrosion Resistance of Low-Cr Alloy Steels Studied by Surface and Electrochemical Techniques" Electrochem 2, no. 4: 546-562. https://doi.org/10.3390/electrochem2040035
APA StyleŁukaszczyk, A., Banaś, J., Pisarek, M., Seyeux, A., Marcus, P., & Światowska, J. (2021). Effect of Cr Content on Corrosion Resistance of Low-Cr Alloy Steels Studied by Surface and Electrochemical Techniques. Electrochem, 2(4), 546-562. https://doi.org/10.3390/electrochem2040035