Accurate Automatic Object Identification Under Complex Lighting Conditions via AI Vision on Enhanced Infrared Polarization Images
Abstract
1. Introduction
2. Design of the Automatic Infrared Object Identification System
3. Results
3.1. Infrared Polarization Object Identification of a Single Target
3.2. Infrared Polarization Object Identification of Multiple Targets
4. Discussion
4.1. Performance Validation of the System in Photon-Deficient Environments
4.2. Multiple Arbitrary Infrared Object Identification Enabled by Model Training
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OI | Object identification |
| IR | Infrared |
| AI | Artificial intelligence |
| DCL | Discrimination confidence level |
| AOP | Angle of polarization |
| DOLP | Degree of linear polarization |
| CNR | Contrast-to-noise ratio |
| SNR | Signal-to-noise ratio |
| PSNR | Peak signal-to-noise ratio |
References
- Tong, K.; Wu, Y.; Zhou, F. Recent advances in small object detection based on deep learning: A review. Image Vis. Comput. 2020, 97, 103910. [Google Scholar] [CrossRef]
- Bresson, G.; Alsayed, Z.; Yu, L.; Glaser, S. Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Trans. Intell. Veh. 2017, 2, 194–220. [Google Scholar] [CrossRef]
- Hu, S.; Liu, T. Underwater rescue target detection based on acoustic images. Sensors 2024, 24, 1780. [Google Scholar] [CrossRef]
- Shen, S.Y.; Singhania, R.; Fehringer, G.; Chakravarthy, A.; Roehrl, M.H.; Chadwick, D.; Zuzarte, P.C.; Borgida, A.; Wang, T.T.; Li, T.; et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 2018, 563, 579–583. [Google Scholar] [CrossRef]
- Kaur, P.; Krishan, K.; Sharma, S.K.; Kanchan, T. Facial-recognition algorithms: A literature review. Med. Sci. Law 2020, 60, 131–139. [Google Scholar] [CrossRef]
- Ding, L.Y.; Yu, H.L.; Li, H.; Zhou, C.; Wu, X.G.; Yu, M. Safety risk identification system for metro construction on the basis of construction drawings. Autom. Constr. 2012, 27, 120–137. [Google Scholar] [CrossRef]
- Loy, C.C.; Chen, K.; Gong, S.; Xiang, T. Crowd counting and profiling: Methodology and evaluation. In Modeling, Simulation and Visual Analysis of Crowds: A Multidisciplinary Perspective; Springer: Berlin/Heidelberg, Germany, 2013; pp. 347–382. [Google Scholar]
- Jain, N.K.; Saini, R.K.; Mittal, P. A review on traffic monitoring system techniques. In Soft Computing: Theories and Applications: Proceedings of SoCTA 2017; Springer: Berlin/Heidelberg, Germany, 2019; pp. 569–577. [Google Scholar]
- Wu, Z.; Liu, J.; Le, N.; Hu, H.; Jiang, L.; Wang, J. Identification model of personnel violations in material warehouse based on source information preprocessing. In Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 14–16 April 2022; pp. 157–163. [Google Scholar]
- Hayter, A.J.; Tsui, K.-L. Identification and quantification in multivariate quality control problems. J. Qual. Technol. 1994, 26, 197–208. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Comput. Electron. Agric. 2017, 141, 351–356. [Google Scholar] [CrossRef]
- Guo, T.; Huynh, C.P.; Solh, M. Domain-adaptive pedestrian detection in thermal images. In Proceedings of the 2019 IEEE international conference on image processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1660–1664. [Google Scholar]
- Zhu, H.; Li, Q.; Tao, C.; Hong, Y.; Xu, Z.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 2021, 12, 1805. [Google Scholar] [CrossRef]
- Planck, M. Über die Begründung des Gesetzes der schwarzen Strahlung. Ann. Physic 1912, 342, 642–656. [Google Scholar] [CrossRef]
- Khanna, D.; De, S.; Raj, A.B.; Chaudhari, B.S. Design and implementation of a photonic-based electronic warfare system. J. Opt. Photonics Res. 2024, 2, 231–244. [Google Scholar] [CrossRef]
- Liu, S.T.; Zhou, X.D.; Chen, Y.G. Evaluation Techniques for Countermeasures and Counter-contermeasures Performance on Electro-optical Imaging Guided Systems. Laser Infrared 2007, 37, 10–13. [Google Scholar]
- Dahl, L.M.; Shaw, J.A.; Chenault, D.B. Detection of a poorly resolved airplane using SWIR polarization imaging. In Proceedings of the Polarization: Measurement, Analysis, and Remote Sensing XII, Baltimore, MD, USA, 18–19 April 2016; pp. 194–204. [Google Scholar]
- Yang, M.; Xu, W.; Sun, Z.; Wu, H.; Tian, Y.; Li, L. Mid-wave infrared polarization imaging system for detecting moving scene. Opt. Lett. 2020, 45, 5884–5887. [Google Scholar] [CrossRef]
- Smith, M.L.; Smith, L.N.; Hansen, M.F. The quiet revolution in machine vision-a state-of-the-art survey paper, including historical review, perspectives, and future directions. Comput. Ind. 2021, 130, 103472. [Google Scholar] [CrossRef]
- Ranft, B.; Stiller, C. The role of machine vision for intelligent vehicles. IEEE Trans. Intell. Veh. 2016, 1, 8–19. [Google Scholar] [CrossRef]
- Golnabi, H.; Asadpour, A. Design and application of industrial machine vision systems. Robot. Comput.-Integr. Manuf. 2007, 23, 630–637. [Google Scholar] [CrossRef]
- Jumaah, H.J.; Rashid, A.A.; Saleh, S.A.R.; Jumaah, S.J. Deep neural remote sensing and Sentinel-2 satellite image processing of Kirkuk City, Iraq for sustainable prospective. J. Opt. Photonics Res. 2025, 2, 172–180. [Google Scholar] [CrossRef]
- Wu, D.; Jiang, S.; Zhao, E.; Liu, Y.; Zhu, H.; Wang, W.; Wang, R. Detection of Camellia oleifera fruit in complex scenes by using YOLOv7 and data augmentation. Appl. Sci. 2022, 12, 11318. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yu, Q.; Zhan, J.; Liu, H.; Liu, J. A driver fatigue detection algorithm based on dynamic tracking of small facial targets using YOLOv7. IEICE Trans. Inf. Syst. 2023, 106, 1881–1890. [Google Scholar] [CrossRef]
- Walraven, R. Polarization imagery. Opt. Eng. 1981, 20, 14–18. [Google Scholar] [CrossRef]
- Egan, W.G.; Johnson, W.R.; Whitehead, V.S. Terrestrial polarization imagery obtained from the Space Shuttle:characterization and interpretation. Appl. Opt. 1991, 30, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Azzam, R.; Sudradjat, F. Single-layer-coated beam splitters for the division-of-amplitude photopolarimeter. Appl. Opt. 2005, 44, 190–196. [Google Scholar] [CrossRef]
- Garlick, G.F.J.; Steigmann, G.A.; Lamb, W.E. Differential Optical Polarization Detectors. U.S. Patent 3,992,571, 16 November 1976. [Google Scholar]
- Andreou, A.G.; Kalayjian, Z. Polarization imaging: Principles and integrated polarimeters. IEEE Sens. J. 2002, 2, 566–576. [Google Scholar] [CrossRef]
- Azzam, R.M.A. Stokes-vector and Mueller-matrix polarimetry. J. Opt. Soc. Am. A 2016, 33, 1396–1408. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Mota, J.; Bogdanova, I.; Paquier, B.; Bierlaire, M.; Thiran, J.-P. Scale invariant feature transform on the sphere: Theory and applications. Int. J. Comput. Vis. 2012, 98, 217–241. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Maurer, T. How to pan-sharpen images using the gram-schmidt pan-sharpen method–A recipe. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 239–244. [Google Scholar] [CrossRef]
- Xu, C.J.; Su, L.; Yang, G.Y.; Zhao, J.S.; Cai, Y.; Pan, S.C. Images Processing and Evaluation of Middle Wave Infrared Polarization Imaging System. Infrared Technol. 2009, 31, 362–366. [Google Scholar]
- Puerto, D.B. Intrinsic and extrinsic scattering and absorption coefficients new equations in four-flux and two-flux models used for determining light intensity gradients. J. Opt. Photonics Res. 2024, 1, 131–144. [Google Scholar] [CrossRef]
- Helmenstine, A.M. Tyndall effect definition and examples. Available online: https://sciencenotes.org/tyndall-effect-definition-and-examples/ (accessed on 22 December 2025).












Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jia, R.; Fei, H.; Lin, H.; Yang, Y.; Liu, X.; Zhang, M.; Xiao, L. Accurate Automatic Object Identification Under Complex Lighting Conditions via AI Vision on Enhanced Infrared Polarization Images. Optics 2026, 7, 3. https://doi.org/10.3390/opt7010003
Jia R, Fei H, Lin H, Yang Y, Liu X, Zhang M, Xiao L. Accurate Automatic Object Identification Under Complex Lighting Conditions via AI Vision on Enhanced Infrared Polarization Images. Optics. 2026; 7(1):3. https://doi.org/10.3390/opt7010003
Chicago/Turabian StyleJia, Ruixin, Hongming Fei, Han Lin, Yibiao Yang, Xin Liu, Mingda Zhang, and Liantuan Xiao. 2026. "Accurate Automatic Object Identification Under Complex Lighting Conditions via AI Vision on Enhanced Infrared Polarization Images" Optics 7, no. 1: 3. https://doi.org/10.3390/opt7010003
APA StyleJia, R., Fei, H., Lin, H., Yang, Y., Liu, X., Zhang, M., & Xiao, L. (2026). Accurate Automatic Object Identification Under Complex Lighting Conditions via AI Vision on Enhanced Infrared Polarization Images. Optics, 7(1), 3. https://doi.org/10.3390/opt7010003

