Resolution Improvement for Coherent Illumination Microscopy via Incident Light Phase Modulation
Abstract
:1. Introduction
2. Theoretical Analysis and Simulation Model
2.1. Theoretical Analysis
2.2. Simulation Model
3. Results and Discussion
3.1. Influence of Optical Phase on the Diffraction Limit
3.2. Super-Resolution Imaging System Based on Phase Modulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, D.R. Progresses in implementation of STED microscopy. Meas. Sci. Technol. 2023, 34, 102002. [Google Scholar] [CrossRef]
- Li, C.; Liu, S.; Wang, W.; Liu, W.; Liu, X. Recent research on stimulated emission depletion microscopy for reducing photobleaching. J. Microsc. 2018, 271, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Leung, B.; Chou, K. Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 2011, 65, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tehrani, K.; Kner, P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy. ACS Nano 2015, 9, 2917–2925. [Google Scholar] [CrossRef] [PubMed]
- Haji, B.; Beheiry, M.E.; Dahan, M. PSF engineering in multifocus microscopy for increased depth volumetric imaging. Biomed. Opt. Express 2016, 7, 726. [Google Scholar] [CrossRef] [PubMed]
- Izeddin, I.; Beheiry, M.E.; Andilla, J.; Ciepielewski, D.; Darzacq, X.; Dahan, M. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt. Express 2012, 20, 4957–4967. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Kner, P.; Rego, E.; Gustafsson, M. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 2011, 8, 1044–1046. [Google Scholar] [CrossRef] [PubMed]
- Rogers, E.; Lindberg, J.; ROY, T.; Savo, S.; Chad, J.; Dennis, M.; Zhwludev, N. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 2012, 11, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Huang, K.; Wu, J.; Jiao, J.; Luo, X.; Qiu, C.; Hong, M. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep. 2015, 5, 09977. [Google Scholar] [CrossRef] [PubMed]
- Willig, K.; Rizzoli, S.; Westphal, V.; Jahn, R.; Hell, S. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006, 440, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Ash, E.A.; Nicholls, G. Super-resolution aperture sanning microscope. Nature 1972, 237, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Chen, Z.; Hong, M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Deng, Y.; Zhou, W.; Yu, M.; Urbach, H.P.; Wu, Y. Effects of whispering gallery mode in microsphere super-resolution imaging. Appl. Phys. B 2017, 123, 236. [Google Scholar] [CrossRef]
- Yang, H.; Moullan, N.; Auwerx, J.; Gijs, M.A.M. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small 2014, 10, 1712–1718. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Durant, S.; Lee, H.; Pikus, Y.; Fang, N.; Xiong, Y.; Sun, C.; Zhang, X. Far-Field optical superlens. Nano Lett. 2007, 7, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kuang, C.; Hao, X.; Pang, C.; Xu, P.; Li, H.; Yu, C.; Xu, Y.; Nan, D. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett. 2017, 118, 076101. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Liu, X.; Kuang, C.; Li, Y.; Ku, Y.; Zhang, H.; Li, H.; Tong, L. Far-field super-resolution imaging using near-field illumination by micro-fiber. Appl. Phys. Lett. 2013, 102, 013104. [Google Scholar] [CrossRef]
- Ling, J.; Wang, Y.; Liu, X.; Wang, X. Resolution improvement of dark-field microscopy via micro-particle near-field illumination. Opt. Lett. 2021, 46, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, J.; Li, Y.; Guo, J.; Liu, X.; Wang, X. Resolution Improvement for Coherent Illumination Microscopy via Incident Light Phase Modulation. Optics 2024, 5, 406-415. https://doi.org/10.3390/opt5040030
Ling J, Li Y, Guo J, Liu X, Wang X. Resolution Improvement for Coherent Illumination Microscopy via Incident Light Phase Modulation. Optics. 2024; 5(4):406-415. https://doi.org/10.3390/opt5040030
Chicago/Turabian StyleLing, Jinzhong, Yangyang Li, Jinkun Guo, Xin Liu, and Xiaorui Wang. 2024. "Resolution Improvement for Coherent Illumination Microscopy via Incident Light Phase Modulation" Optics 5, no. 4: 406-415. https://doi.org/10.3390/opt5040030
APA StyleLing, J., Li, Y., Guo, J., Liu, X., & Wang, X. (2024). Resolution Improvement for Coherent Illumination Microscopy via Incident Light Phase Modulation. Optics, 5(4), 406-415. https://doi.org/10.3390/opt5040030