Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raman Spectra Collection
2.2. Raman Data and Pre-Processing
2.3. Pre-Training Dataset and Classification Models
2.3.1. Transfer Learning
Convolutional Neural Network (CNN)
Residual Network (ResNet)
3. Results and Discussion
3.1. Pre-Processing Data
3.2. Transfer Learning vs. Non-Transfer Learning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colorectal Cancer Statistics. Available online: https://www.wcrf.org/cancer-trends/colorectal-cancer-statistics/ (accessed on 11 December 2022).
- Krafft, C.; Schie, I.W.; Meyer, T.; Schmitt, M.; Popp, J. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem. Soc. Rev. 2016, 45, 1819–1849. [Google Scholar]
- Santos, I.P.; Caspers, P.J.; Schut, T.B.; van Doorn, R.; Koljenović, S.; Puppels, G.J. Implementation of a novel low-noise InGaAs detector enabling rapid near-infrared multichannel Raman spectroscopy of pigmented biological samples. J. Raman Spectrosc. 2015, 46, 652–660. [Google Scholar] [CrossRef]
- Çulha, M. Raman spectroscopy for cancer diagnosis: How far have we come? Bioanalysis 2015, 7, 2813–2824. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; McGregor, H.; Short, M.; Zeng, H. Clinical utility of Raman spectroscopy: Current applications and ongoing developments. Adv. Health Care Technol. 2016, 13, 13–29. [Google Scholar] [CrossRef]
- Camp, C.H., Jr.; Cicerone, M.T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photonics 2015, 9, 295–305. [Google Scholar]
- Krishna, H.; Majumder, S.K.; Chaturvedi, P.; Sidramesh, M.; Gupta, P.K. In vivo Raman spectroscopy for detection of oral neoplasia: A pilot clinical study. J. Biophotonics 2014, 7, 690–702. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, J.; Short, M.; Zeng, H. Real-time in vivo cancer diagnosis using raman spectroscopy. J. Biophotonics 2015, 8, 527–545. [Google Scholar] [CrossRef]
- Santos, I.P.; Barroso, E.M.; Schut, T.C.B.; Caspers, P.J.; van Lanschot, C.G.F.; Choi, D.-H.; van der Kamp, M.F.; Smits, R.W.H.; van Doorn, R.; Verdijk, R.M.; et al. Raman spectroscopy for cancer detection and cancer surgery guidance: Translation to the clinics. Analyst 2017, 142, 3025–3047. [Google Scholar]
- Short, M.A.; Tai, I.T.; Owen, D.; Zeng, H. Using high frequency Raman spectra for colonic neoplasia detection. Opt. Express 2013, 21, 5025–5034. [Google Scholar] [CrossRef]
- Bergholt, M.S.; Lin, K.; Wang, J.; Zheng, W.; Xu, H.; Huang, Q.; Ren, J.; Ho, K.Y.; Teh, M.; Srivastava, S.; et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J. Biophotonics 2016, 9, 333–342. [Google Scholar] [CrossRef]
- Brozek-Pluska, B.; Musial, J.; Kordek, R.; Abramczyk, H. Analysis of Human Colon by Raman Spectroscopy and Imaging-Elucidation of Biochemical Changes in Carcinogenesis. Int. J. Mol. Sci. 2019, 20, 3398. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Yan, S.; Lyu, D.; Xu, M.; Ye, R.; Zheng, P.; Lu, X.; Wang, L.; Ren, B. Deep Learning for Biospectroscopy and Biospectral Imaging: State-of-the-Art and Perspectives. Anal. Chem. 2021, 93, 3653–3665. [Google Scholar] [CrossRef]
- Ho, C.; Zhao, Z.; Chen, X.F.; Sauer, J.; Saraf, S.A.; Jialdasani, R.; Taghipour, K.; Sathe, A.; Khor, L.Y.; Lim, K.H.; et al. A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer. Sci. Rep. 2022, 12, 2222. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lenferink, A.T.M.; Otto, C.; Offerhaus, H.L. Classifying Raman spectra of extracellular vesicles based on convolutional neural networks for prostate cancer detection. J. Raman Spectrosc. 2019, 51, 293–300. [Google Scholar] [CrossRef]
- Cao, Z.; Pan, X.; Yu, H.; Hua, S.; Wang, D.; Chen, D.Z.; Zhou, M.; Wu, J. A Deep Learning Approach for Detecting Colorectal Cancer via Raman Spectra. BME Front. 2022, 2022, 9872028. [Google Scholar] [CrossRef]
- Ngiam, K.Y.; Khor, I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019, 20, 262–273. [Google Scholar] [CrossRef]
- Jain, S.H.; Rosenblatt, M.; Duke, J. Is big data the new frontier for academic-industry collaboration? JAMA 2014, 311, 2171–2172. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Hu, J.; Zou, Y.; Sun, B.; Yu, X.; Shang, Z.; Huang, J.; Jin, S.; Liang, P. Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 265, 120366. [Google Scholar] [CrossRef]
- Zhang, R.; Xie, H.; Cai, S.; Hu, Y.; Liu, G.-K.; Hong, W.; Tian, Z.-Q. Transfer-learning-based Raman spectra identification. J. Raman Spectrosc. 2020, 51, 176–186. [Google Scholar] [CrossRef]
- Ho, C.-S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.E.; Ermon, S.; Dionne, J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927. [Google Scholar] [CrossRef]
- Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 2012, 3, 153–173. [Google Scholar] [PubMed]
- Lykidis, D.; Van Noorden, S.; Armstrong, A.; Spencer-Dene, B.; Li, J.; Zhuang, Z.; Stamp, G.W. Novel zinc-based fixative for high quality DNA, RNA and protein analysis. Nucleic Acids Res. 2007, 35, 85. [Google Scholar] [CrossRef]
- Chi, M.; Han, X.; Xu, Y.; Wang, Y.; Shu, F.; Zhou, W.; Wu, Y. An Improved Background-Correction Algorithm for Raman Spectroscopy Based on the Wavelet Transform. Appl. Spectrosc. 2019, 73, 78–87. [Google Scholar] [CrossRef]
- Morháč, M. An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nucl. Instrum. Methods Phys. Res. A 2009, 600, 478–487. [Google Scholar] [CrossRef]
- Airola, A.; Pahikkala, T.; Waegeman, W.; De Baets, B.; Salakoski, T. An experimental comparison of cross-validation techniques for estimating the area under the ROC curve. Comput. Stat. Data Anal. 2011, 55, 1828–1844. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413–426. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhang, L.; Li, C.; Peng, D.; Yi, X.; He, S.; Liu, F.; Zheng, X.; Huang, W.E.; Zhao, L.; Huang, X. Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 264, 120300. [Google Scholar] [CrossRef]
- Kouri, M.A.; Spyratou, E.; Karnachoriti, M.; Kalatzis, D.; Danias, N.; Arkadopoulos, N.; Seimenis, I.; Raptis, Y.S.; Kontos, A.G.; Efstathopoulos, E.P. Raman Spectroscopy: A Personalized Decision-Making Tool on Clinicians’ Hands for In Situ Cancer Diagnosis and Surgery Guidance. Cancers 2022, 14, 1144. [Google Scholar] [CrossRef] [PubMed]
Patients/Sets | Healthy | Cancerous | Stage | Grade |
---|---|---|---|---|
set1 | 3 | 5 | ypT3N2a | G2 |
set2 | 18 | 10 | pT1N0 | G1 |
set3 | 8 | 10 | pT4bN1 | G2 |
set4 | 13 | 11 | pT3N0 | G2 |
set5 | 9 | 10 | pT3pN0 | G1 |
set6 | 7 | 5 | pT3N0 | G1 |
set7 | 13 | 10 | pT3N1M1 | G2 |
set8 | 13 | 10 | pT3N1c | G2 |
set9 | 10 | 9 | pT2N0 | G2 |
set10 | 14 | 10 | pT3N0 | G2 |
set11 | 16 | 15 | pT2N0 | G2 |
set12 | 10 | 9 | pT3N0Mx | G2 |
Total Spectra | 134 | 114 |
Model | Wavenumber (cm−1) | Accuracy | Recall | Precision | f1_Score |
---|---|---|---|---|---|
1D-CNN | 800–1800 | 0.834 | 0.859 | 0.796 | 0.827 |
1D-CNN | 2200–3200 | 0.762 | 0.754 | 0.735 | 0.744 |
1D-ResNet | 800–1800 | 0.850 | 0.859 | 0.823 | 0.841 |
1D-ResNet | 2200–3200 | 0.814 | 0.850 | 0.769 | 0.808 |
Model | Accuracy | Recall | Precision | f1_Score |
---|---|---|---|---|
1D-CNN | 0.834 | 0.859 | 0.796 | 0.827 |
1D-CNN transfer | 0.887 | 0.885 | 0.870 | 0.878 |
1D-ResNet | 0.850 | 0.859 | 0.823 | 0.841 |
1D-ResNet transfer | 0.870 | 0.833 | 0.879 | 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalatzis, D.; Spyratou, E.; Karnachoriti, M.; Kouri, M.A.; Orfanoudakis, S.; Koufopoulos, N.; Pouliakis, A.; Danias, N.; Seimenis, I.; Kontos, A.G.; et al. Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis. Optics 2023, 4, 310-320. https://doi.org/10.3390/opt4020022
Kalatzis D, Spyratou E, Karnachoriti M, Kouri MA, Orfanoudakis S, Koufopoulos N, Pouliakis A, Danias N, Seimenis I, Kontos AG, et al. Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis. Optics. 2023; 4(2):310-320. https://doi.org/10.3390/opt4020022
Chicago/Turabian StyleKalatzis, Dimitris, Ellas Spyratou, Maria Karnachoriti, Maria Anthi Kouri, Spyros Orfanoudakis, Nektarios Koufopoulos, Abraham Pouliakis, Nikolaos Danias, Ioannis Seimenis, Athanassios G. Kontos, and et al. 2023. "Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis" Optics 4, no. 2: 310-320. https://doi.org/10.3390/opt4020022
APA StyleKalatzis, D., Spyratou, E., Karnachoriti, M., Kouri, M. A., Orfanoudakis, S., Koufopoulos, N., Pouliakis, A., Danias, N., Seimenis, I., Kontos, A. G., & Efstathopoulos, E. P. (2023). Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis. Optics, 4(2), 310-320. https://doi.org/10.3390/opt4020022