Design and Optical Analysis of a Refractive Aspheric Intraocular Lens with Extended Depth of Focus
Abstract
:1. Introduction
2. Methods
2.1. The Pseudophakic Eye Model
2.2. The Optimization of the IOL
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, 1221–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, K.; Wu, R.; Xu, W.; Chen, P.; Yin, J. Combined phacoemulsification, foldable intraocular lens implantation and tra-beculectomy for cataract patients with glaucoma. [Zhonghua Yan Ke Za Zhi] Chin. J. Ophthalmol. 2000, 36, 330–333. [Google Scholar]
- Davison, J.A.; Simpson, M.J. History and development of the apodized diffractive intraocular lens. J. Cataract. Refract. Surg. 2006, 32, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Fine, I.H.; Hoffman, R.S. Refractive lens exchange with the array multifocal intraocular lens. J. Cataract. Refract. Surg. 2002, 28, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Martínez de Carneros-Llorente, A.; Martínez de Carneros, A.; Martínez de Carneros-Llorente, P.; Jiménez-Alfaro, I. Comparison of visual quality and subjective outcomes among 3 trifocal intraocular lenses and 1 bifocal intraocular lens. J. Cataract. Refract. Surg. 2019, 45, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Jonker, S.M.; Bauer, N.J.; Makhotkina, N.Y.; Berendschot, T.T.; van den Biggelaar, F.J.; Nuijts, R.M. Comparison of a trifocal intraocular lens with a +3.0 D bifocal IOL: Results of a prospective randomized clinical trial. J. Cataract. Refract. Surg. 2015, 41, 1631–1640. [Google Scholar] [CrossRef]
- de Vries, N.E.; Nuijts, R.M. Multifocal intraocular lenses in cataract surgery: Literature review of benefits and side effects. J. Cataract. Refract. Surg. 2013, 39, 268–278. [Google Scholar] [CrossRef]
- Breyer, D.R.H.; Kaymak, H.; Ax, T.; Kretz, F.T.A.; Auffarth, G.U.; Hagen, P.R. Multifocal Intraocular Lenses and Extended Depth of Focus Intraocular Lenses. Asia-Pac. J. Ophthalmol. 2017, 6, 339–349. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wang, Z. Intraocular Lens with Large Depth of Focus Based on the Residual Accommodation Power of the Human Eye. Chinese Patent 201510292026.2, 1 June 2015. the Application granted date: 18 May 2016. [Google Scholar]
- Cumming, J.S.; Slade, S.G.; Chayet, A. AT-45 Study Group. Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: Results of feasibility and the initial phase of a Food and Drug Administration clinical trial. Ophthalmology 2001, 108, 2005–2009. [Google Scholar] [CrossRef]
- Langenbucher, A.; Huber, S.; Nguyen, N.X.; Seitz, B.; Gusek-Schneider, G.C.; Küchle, M. Measurement of accommodation after implantation of an accommodating posterior chamber intraocular lens. J. Cataract. Refract. Surg. 2003, 29, 677–685. [Google Scholar] [CrossRef]
- Pepose, J.S.; Burke, J.; Qazi, M.A. Benefits and barriers of accommodating intraocular lenses. Curr. Opin. Ophthalmol. 2017, 28, 3–8. [Google Scholar] [CrossRef]
- Yoo, Y.S.; Whang, W.J.; Byun, Y.S.; Piao, J.J.; Kim, D.Y.; Joo, C.K.; Yoon, G. Through-Focus Optical Bench Performance of Ex-tended Depth-of-Focus and Bifocal Intraocular Lenses Compared to a Monofocal Lens. J. Refract. Surg. 2018, 34, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, M.A.; Varón, C.; Cardona, G.; Buil, J.A. Visual acuity and defocus curves with six multifocal intraocular lenses. Int. Ophthalmol. 2020, 40, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Kohnen, T.; Suryakumar, R. Extended depth-of-focus technology in intraocular lenses. J. Cataract. Refract. Surg. 2020, 46, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.Y.; Liu, Y.J. A New Element for Correcting Presbyopia- Intraocular Lens Based on Light Sword Element. Laser Optoelectron. Prog. 2015, 52, 051701-1-6. [Google Scholar] [CrossRef]
- Mira-Agudelo, A.; Torres-Sepúlveda, W.; Barrera, J.F.; Henao, R.; Blocki, N.; Petelczyc, K.; Kolodziejczyk, A. Compensation of Presbyopia With the Light Sword Lens. Investig. Opthalmology Vis. Sci. 2016, 57, 6870–6877. [Google Scholar] [CrossRef] [Green Version]
- Fernández, D.; Barbero, S.; Dorronsoro, C.; Marcos, S. Multifocal intraocular lens providing optimized through-focus perfor-mance. Opt. Lett. 2013, 38, 5303–5306. [Google Scholar] [CrossRef]
- Lai, J.; Liu, Y.; Wang, X.; Wang, Z. Multifocal Intraocular Lens to Correct Presbyopia; Optical Design & Testing VII: Beijing, China, 2016. [Google Scholar]
- Kohnen, T.; Böhm, M.; Hemkeppler, E.; Schönbrunn, S.; DeLorenzo, N.; Petermann, K.; Herzog, M. Visual performance of an extended depth of focus intraocular lens for treatment selection. Eye 2019, 33, 1556–1563. [Google Scholar] [CrossRef]
- Ganesh, S.; Brar, S.; Pawar, A.; Relekar, K.J. Visual and Refractive Outcomes following Bilateral Implantation of Extended Range of Vision Intraocular Lens with Micromonovision. J. Ophthalmol. 2018, 2018, 7321794. [Google Scholar] [CrossRef]
- Atchison, D.A.; Smith, G. Chromatic dispersions of the ocular media of human eyes. J. Opt. Soc. Am. A 2005, 22, 29–37. [Google Scholar] [CrossRef]
- Cardona, G.; López, S. Pupil diameter, working distance and illumination during habitual tasks. Implications for simulta-neous vision contact lenses for presbyopia. J. Optom. 2016, 9, 78–84. [Google Scholar] [CrossRef]
- Koch, D.D.; Samuelson, S.W.; Haft, E.A.; Merin, L.M. Pupillary size and responsiveness. Implications for selection of a bifocal intraocular lens. Ophthalmology 1991, 98, 1030–1035. [Google Scholar] [CrossRef]
- Lee, Y.; Łabuz, G.; Son, H.S.; Yildirim, T.M.; Khoramnia, R.; Auffarth, G.U. Assessment of the image quality of extended depth-of-focus intraocular lens models in polychromatic light. J. Cataract. Refract. Surg. 2020, 46, 108–115. [Google Scholar] [CrossRef]
- ISO 11979-2:2014; Ophthalmic Implants—Intraocular Lenses—Part 2: Optical Properties and Test Methods. ISO: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/55682.html (accessed on 1 May 2022).
- Bringmann, A.; Syrbe, S.; Görner, K.; Kacza, J.; Francke, M.; Wiedemann, P.; Reichenbach, A. The primate fovea: Structure, function and development. Prog. Retin. Eye Res. 2018, 66, 49–84. [Google Scholar] [CrossRef]
- Charman, W.N. Correcting presbyopia: The problem of pupil size. Ophthalmic Physiol. Opt. 2017, 37, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kong, M.M.; Gao, Z.S.; Li, X.H.; Ding, S.H.; Qu, X.M.; Yu, M.Q. A generic eye model by reverse building based on Chinese population. Opt. Express 2009, 17, 13283–13297. [Google Scholar] [CrossRef]
- Du, W.; Lou, W.; Wu, Q. Personalized aspheric intraocular lens implantation based on corneal spherical aberration: A review. Int. J. Ophthalmol. 2019, 12, 1788–1792. [Google Scholar] [CrossRef]
- Beiko, G.H.; Haigis, W.; Steinmueller, A. Distribution of corneal spherical aberration in a comprehensive ophthalmology practice and whether keratometry can predict aberration values. J. Cataract. Refract. Surg. 2007, 33, 848–858. [Google Scholar] [CrossRef]
- Domínguez-Vicent, A.; Esteve-Taboada, J.J.; Del Águila-Carrasco, A.J.; Ferrer-Blasco, T.; Montés-Micó, R. In Vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1387–1397. [Google Scholar] [CrossRef]
- Abbott Medical Optics, Abbott Park, IL, USA, “TECNIS 1-Piece ZCB00 Brochure”. Available online: https://www.precisionlens.net/wp-content/uploads/PCB00-ZCB00-Brochure.pdf (accessed on 1 July 2022).
- Chen, X.Y.; Wang, Y.C.; Zhao, T.Y.; Wang, Z.Z.; Wang, W. Tilt and decentration with various intraocular lenses: A narrative review. World J. Clin. Cases 2022, 10, 3639–3646. [Google Scholar] [CrossRef]
- Borkenstein, A.F.; Borkenstein, E.M.; Luedtke, H.; Schmid, R. Impact of Decentration and Tilt on Spherical, Aberration Correcting, and Specific Aspherical Intraocular Lenses: An Optical Bench Analysis. Ophthalmic Res. 2022, 65, 425–436. [Google Scholar] [CrossRef] [PubMed]
Radius (mm) | Thickness (mm) | Refractive Index | |
---|---|---|---|
Anterior cornea | 7.8 | 0.5 | 1.376 |
Posterior cornea | 6.6 | 3.5 | 1.336 |
Pupil | Infinity | 0 | 1.336 |
Anterior IOL | - | - | 1.494 |
Posterior IOL | - | - | 1.336 |
Retina | −12.5 | - | - |
Config 1 | Config 2 | Config 3 | Config 4 | Config 5 | Config 6 | Config 7 | Config 8 | Config 9 | Config 10 | Config 11 | Config 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
object distance (m) | 5 | 5 | 3 | 3 | 1 | 1 | 0.8 | 0.8 | 0.6 | 0.6 | 0.4 | 0.4 |
aperture (mm) | 2.25 | 1.5 | 2.25 | 1.5 | 2.25 | 1.5 | 2.25 | 1.5 | 2.25 | 1.5 | 2.25 | 1.5 |
weights | 0.1 | 0.2 | 0.01 | 0.02 | 0.04 | 0.08 | 0.01 | 0.02 | 0.01 | 0.02 | 0.18 | 0.36 |
Radius (mm) | a2 | a3 | a4 | a5 | ||
---|---|---|---|---|---|---|
anterior surface | 2.8433 | −66.5077 | −7.397 × 10−3 | 6.523 × 10−4 | −1.202 × 10−4 | 4.577 × 10−6 |
posterior surface | −1.134 × 10−40 | −5.933 × 105 | −0.0166 | 2.255 × 10−3 | −2.121 × 10−4 | 3.166 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Chen, X.; Bian, Y.; Xing, Y.; Li, X.; Liu, D.; Liu, Y. Design and Optical Analysis of a Refractive Aspheric Intraocular Lens with Extended Depth of Focus. Optics 2023, 4, 146-155. https://doi.org/10.3390/opt4010011
Li K, Chen X, Bian Y, Xing Y, Li X, Liu D, Liu Y. Design and Optical Analysis of a Refractive Aspheric Intraocular Lens with Extended Depth of Focus. Optics. 2023; 4(1):146-155. https://doi.org/10.3390/opt4010011
Chicago/Turabian StyleLi, Kunqi, Xiaoqin Chen, Yayan Bian, Yuwei Xing, Xiaolan Li, Dongyu Liu, and Yongji Liu. 2023. "Design and Optical Analysis of a Refractive Aspheric Intraocular Lens with Extended Depth of Focus" Optics 4, no. 1: 146-155. https://doi.org/10.3390/opt4010011
APA StyleLi, K., Chen, X., Bian, Y., Xing, Y., Li, X., Liu, D., & Liu, Y. (2023). Design and Optical Analysis of a Refractive Aspheric Intraocular Lens with Extended Depth of Focus. Optics, 4(1), 146-155. https://doi.org/10.3390/opt4010011