Design of a Highly Sensitive Detector Using a Ternary Photonic Crystal (PC) Based on Titanium Nitride Sandwiched between Si and SiO2 for the Creatinine Concentration Detection in the Blood Serum
Abstract
:1. Introduction
2. Theoretical Method
3. Results and Discussion
3.1. Creatinine Concentration Biosensor
3.2. Effect of Variation in the Incident Angle
3.3. Effect of Variation in the Thickness of Defective Cavity
3.4. Analysis of the Optimum Case for the Proposed Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, A.M.; Elsayed, H.A.; Mehaney, A. High-Performance Temperature Sensor Based on One-dimensional Pyro electric Photonic Crystals Comprising Tamm/Fano Resonances. Plasmonics 2020, 16, 547–557. [Google Scholar] [CrossRef]
- Aly, A.H.; Mohamed, D.; Zaky, Z.A.; Matar, Z.S.; El-Gawaad, N.S.A.; Shalaby, A.S.; Tayeboun, F.; Mohaseb, M. Novel Biosensor Detection of Tuberculosis Based on Photonic Band Gap Materials. Mater. Res. 2021, 24, e20200483. [Google Scholar] [CrossRef]
- Daher, M.G.; Jaroszewicz, Z.; Zyoud, S.H.; Panda, A.; Abd-Elnaby, M.; Mahmoud, M.A.E.; Ahmed, N.Z.R. Design of A novel Detector Based on Photonic Crystal Nanostructure for Ultra-High Performance Detection of Cells with Diabetes. Opt. Quantum Electron. 2022, 54, 701. [Google Scholar] [CrossRef]
- Almawgani, A.H.M.; Taya, S.A.; Daher, M.G.; Alhawari, A.R.H.; Colak, I.; Patel, S.K. Design of a Novel Protein Sensor of High Sensitivity Using a Defective Ternary Photonic Crystal Nanostructure. Silicon 2022, 1–8. [Google Scholar] [CrossRef]
- Wu, F.; Wu, J.; Fan, C.; Guo, Z.; Xue, C.; Jiang, H.; Sun, Y.; Li, Y.; Chen, H. Omnidirectional optical filtering based on two kinds of photonic band gaps with different angle-dependent properties. Eur. Lett. 2020, 129, 34004. [Google Scholar] [CrossRef]
- Bikbaev, R.G.; Vetrov, S.Y.; Timofeev, I.V. Hyperbolic metamaterial for the Tamm plasmon polariton application. J. Opt. Soc. Am. B 2020, 37, 2215–2220. [Google Scholar] [CrossRef]
- Boutami, S.; Benbakir, B.; Leclercq, J.; Viktorovitch, P. Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror. Appl. Phys. Lett. 2007, 91, 071105. [Google Scholar] [CrossRef]
- Almawgani, A.H.M.; Daher, M.G.; Taya, S.A.; Colak, I.; Patel, S.K.; Ramahi, O.M. Highly sensitive nano-biosensor based on a binary photonic crystal for cancer cell detection. Opt. Quantum Electron. 2022, 54, 554. [Google Scholar] [CrossRef]
- Zhao, X.; Hua, L.; Jiang, G.; Cheng, J.; Xiong, Q. A novel polarization filter based on photonic crystal fiber with a single Au-coated air hole and semi-hourglass structure. Plasmonics 2019, 14, 1725–1733. [Google Scholar] [CrossRef]
- Cui, L.; Du, G.; Ng, J. Angle-independent and -dependent optical binding of a one-dimensional photonic hypercrystal. Phys. Rev. A 2020, 102, 023502. [Google Scholar] [CrossRef]
- Taya, S.A.; Daher, M.G. Properties of defect modes of one-dimensional quaternary defective photonic crystal nanostructure. Int. J. Smart Grid-Ijsmartgrid 2022, 6, 29–39. [Google Scholar]
- Segovia-Chaves, F.; Vinck-Posada, H. Dependence of the defect mode with temperature, pressure and angle of incidence in a 1D semiconductor-superconductor photonic crystal. Phys. C Supercond. Appl. 2018, 553, 1–7. [Google Scholar] [CrossRef]
- Summers, N.; Johnsen, G.; Mogstad, A.; Løvås, H.; Fragoso, G.; Berge, J. Underwater Hyperspectral Imaging of Arctic Macroalgal Habitats during the Polar Night Using a Novel Mini-ROV-UHI Portable System. Remote Sens. 2022, 14, 1325. [Google Scholar] [CrossRef]
- Baker, J.E.; Sriram, R.; Miller, B.L. Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab. Chip. 2015, 21, 971–990. [Google Scholar] [CrossRef] [Green Version]
- Segovia-Chaves, F.; Vinck-Posada, H. Tuning of the defect mode in a 1D superconductor-semiconductor crystal with hydrostatic pressure dependent frequency of the transverse optical phonons. Phys. C Supercond. 2018, 556, 7–13. [Google Scholar] [CrossRef]
- Chen, T.; Han, Z.; Liu, J.; Hong, Z. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors. Appl. Opt. 2014, 53, 3454–3458. [Google Scholar] [CrossRef]
- Aly, A.H.; Ghany, S.S.A.; Fadlallah, M.; Salman, F.; Kamal, B. Transmission and temperature sensing characteristics of a binary and ternary photonic band gap. J. Nanoelectron. Optoelectron. 2015, 10, 9–14. [Google Scholar] [CrossRef]
- Ayyanar, N.; Raja, G.T.; Sharma, M.; Kumar, D.S. Photonic Crystal Fiber-Based Refractive Index Sensor for Early Detection of Cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Raveendran, J.; Resmi, P.E.; Ramachandran, T.; Nair, B.G.; Babu, T.G. Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sens. Actuators B 2017, 243, 589–595. [Google Scholar] [CrossRef]
- Zeng, C.; Luo, C.; Hao, L.; Xie, Y. The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle. Chin. Opt. Lett. 2014, 12, 11602. [Google Scholar] [CrossRef] [Green Version]
- Junge, W.; Wilke, B.; Halabi, A.; Klein, G. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaff´e method. Clin. Chim. Acta 2004, 344, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Kotegawa, K. Simultaneous flow-injection assay of creatinine and creatinine in serum by the combined use of a 16-way switching valve, some specific enzyme reactors and a highly selective hydrogen peroxide electrode. Anal. Chim. Acta 2002, 462, 283–291. [Google Scholar] [CrossRef]
- Sharma, A.C.; Jana, T.; Kesavamoorthy, R.; Shi, L.; Virji, M.A.; Finegold, D.N.; Asher, S.A. A general photonic crystal sensing motif: Creatinine in bodily fluids. J. Am. Chem. Soc. 2004, 126, 2973. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Daher, M.G.; Pukhrambam, P.D.; Wu, F. Study of titanium nitride (TiN) as a novel plasmonic material for realization of Tamm-plasmon-polariton-based blood plasma sensor. Opt. Quantum Electron. 2022, 54, 796. [Google Scholar] [CrossRef]
- Daher, M.G.; Taya, S.A.; Colak, I.; Vigneswaran, D.; Olaimat, M.M.; Patel, S.K.; Ramahi, O.M.; Almawgani, A.H. Design of a nano-sensor for cancer cell detection based on a ternary photonic crystal with high sensitivity and low detection limit. Chin. J. Phys. 2022, 77, 1168–1181. [Google Scholar] [CrossRef]
- Aly, A.H.; Mohamed, D.; Mohaseb, M.A.; El-Gawaad, N.S.A.; Trabelsi, Y. Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 2020, 10, 31765–31772. [Google Scholar] [CrossRef]
- Gandhi, S.; Awasthi, S.K.; Aly, A.H. Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 2021, 11, 26655–26665. [Google Scholar] [CrossRef]
- Taya, S.A.; Daher, M.G.; Colak, I.; Ramahi, O.M. Highly sensitive nano-sensor based on a binary photonic crystal for the detection of mycobacterium tuberculosis bacteria. J. Mater. Sci. Mater. Electron. 2021, 32, 28406–28416. [Google Scholar] [CrossRef]
- Daher, M.G.; Taya, S.A.; Colak, I.; Ramahi, O.M. Design of a novel optical sensor for the detection of waterborne bacteria based on a photonic crystal with an ultra-high sensitivity. Opt. Quantum Electron. 2022, 54, 108. [Google Scholar] [CrossRef]
- Ramanujam, N.R.; Amiri, I.; Taya, S.A.; Olyaee, S.; Udaiyakumar, R.; Pandian, A.P.; Wilson, K.S.J.; Mahalakshmi, P.; Yupapin, P.P. Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst. Technol. 2019, 25, 189–196. [Google Scholar] [CrossRef]
- Nejad, H.E.; Mir, A.; Farmani, A. Supersensitive and Tunable Nano-Biosensor for Cancer Detection. IEEE Sensors J. 2019, 19, 4874–4881. [Google Scholar] [CrossRef]
- Bijalwan, A.; Singh, B.K.; Rastogi, V. Analysis of one-dimensional photonic crystal-based sensor for detection of blood plasma and cancer cells. Opt. Int. J. Light Electron Opt. 2021, 226, 165994. [Google Scholar] [CrossRef]
- Almawgani, A.H.M.; Suthar, B.; Bhargava, A.; Taya, S.A.; Daher, M.G.; Wu, F.; Colak, I. Sucrose concentration detector based on a binary photonic crystal with a defect layer and two nanocom-posite layers. Z. Für Nat. A—Sect. A J. Phys. Sci. 2022, 77, 909–919. [Google Scholar]
Creatinine Concentration (µmol/L) | 80.9 | 81.43 | 82.3 | 83.3 | 84.07 | 85.28 |
Refractive index | 2.661 | 2.655 | 2.639 | 2.610 | 2.589 | 2.565 |
Incident Angle (θ0) | Position of Resonant Peak at C = 80.9 (mmol/L) | Position of Resonant Peak at C = 82.3 (mmol/L) | Shift of Wavelength (nm) | S (nm/RIU) |
---|---|---|---|---|
0.0 | 1871.76 | 1864.47 | 7.29 | 331.36 |
10 | 1864.17 | 1856.85 | 7.32 | 332.72 |
20 | 1842.34 | 1834.89 | 7.45 | 338.63 |
30 | 1809 | 1801.17 | 7.83 | 355.90 |
40 | 1768.3 | 1760.02 | 8.28 | 376.36 |
50 | 1725.21 | 1716.52 | 8.69 | 395 |
60 | 1685.11 | 1675.96 | 9.15 | 415.90 |
70 | 1652.73 | 1643.29 | 9.44 | 429.09 |
Incident Angle (θ0) | Position of Resonant Peak at C = 80.9 (µmol/L) | Position of Resonant Peak at C = 82.3 (µmol/L) | Shift of Wavelength (nm) | S (nm/RIU) |
---|---|---|---|---|
0.0 | 1871.76 | 1864.47 | 7.29 | 331.36 |
10 | 1865.33 | 1858.01 | 7.32 | 332.72 |
20 | 1846.5 | 1839.16 | 7.34 | 333.63 |
30 | 1816.8 | 1809.36 | 7.44 | 338.18 |
40 | 1778.51 | 1771.03 | 7.48 | 340 |
50 | 1734.82 | 1727.35 | 7.47 | 339.54 |
60 | 1689.83 | 1682.41 | 7.42 | 337.27 |
70 | 1649.07 | 1641.72 | 7.35 | 334.09 |
Thickness of Cavity Layer (µm) | Position of Resonant Peak at C = 80.9 (µmol/L) | Position of Resonant Peak at C = 82.3 (µmol/L)) | Shift of Wavelength (nm) | S (nm/RIU) |
---|---|---|---|---|
0.5 | 1871.76 | 1864.47 | 7.29 | 331.36 |
1 | 2039.38 | 2029.24 | 10.14 | 460.90 |
1.5 | 2207 | 2194.01 | 12.99 | 590.45 |
2 | 2274.09 | 2259.68 | 14.41 | 655 |
2.5 | 2341.19 | 2325.36 | 15.83 | 719.54 |
3 | 2377.24 | 2360.79 | 16.45 | 747.72 |
3.5 | 2413.3 | 2396.23 | 17.07 | 775.90 |
4 | 2435.93 | 2418.41 | 17.52 | 796.36 |
4.5 | 2458.57 | 2440.59 | 17.98 | 817.27 |
5 | 2474.14 | 2455.89 | 18.25 | 829.54 |
5.5 | 2489.71 | 2471.2 | 18.51 | 841.36 |
Creatinine Concentration (µmol/L) | Index of Refraction | Resonant Peak Position (nm) | Shift of Wavelength (nm) | S (nm/RIU) |
---|---|---|---|---|
80.9 | 2.661 | 2539 | - | - |
81.43 | 2.655 | 2533.43 | 5.57 | 928.33 |
82.3 | 2.639 | 2518.58 | 20.42 | 930 |
83.3 | 2.610 | 2491.47 | 47.53 | 931.96 |
84.07 | 2.589 | 2471.72 | 67.28 | 934.44 |
85.28 | 2.565 | 2448.95 | 90.05 | 938.02 |
Techniques/Structures | Year | S (nm/RIU) | References |
---|---|---|---|
A PC made of nanocomposite materials as a biosensor | 2019 | 43 | [30] |
Biosensor using array of split ring resonators | 2019 | 657.5 | [31] |
1D-PC based biosensor for creatinine concentration detection | 2020 | 306.25 | [26] |
1D-PC with extra layers on the sensing sample’s sides | 2021 | 161 | [32] |
Creatinine concentration biosensor using a 1D-defective photonic structure | 2021 | 640.29 | [27] |
A layer of nano-composite based a 1D-PC | 2022 | 893 | [33] |
Ternary PC based on titanium nitride sandwiched between Si and SiO2 | 2022 | 938.02 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daher, M.G.; Trabelsi, Y.; Panda, A.; Gevorgyan, A.H.; Abohassan, K.M.; Smirani, L.K.; Altahan, B.R.; Rashed, A.N.Z. Design of a Highly Sensitive Detector Using a Ternary Photonic Crystal (PC) Based on Titanium Nitride Sandwiched between Si and SiO2 for the Creatinine Concentration Detection in the Blood Serum. Optics 2022, 3, 447-461. https://doi.org/10.3390/opt3040038
Daher MG, Trabelsi Y, Panda A, Gevorgyan AH, Abohassan KM, Smirani LK, Altahan BR, Rashed ANZ. Design of a Highly Sensitive Detector Using a Ternary Photonic Crystal (PC) Based on Titanium Nitride Sandwiched between Si and SiO2 for the Creatinine Concentration Detection in the Blood Serum. Optics. 2022; 3(4):447-461. https://doi.org/10.3390/opt3040038
Chicago/Turabian StyleDaher, Malek G., Youssef Trabelsi, Abinash Panda, Ashot H. Gevorgyan, Khedr M. Abohassan, Lassaad K. Smirani, Baraa Riyadh Altahan, and Ahmed Nabih Zaki Rashed. 2022. "Design of a Highly Sensitive Detector Using a Ternary Photonic Crystal (PC) Based on Titanium Nitride Sandwiched between Si and SiO2 for the Creatinine Concentration Detection in the Blood Serum" Optics 3, no. 4: 447-461. https://doi.org/10.3390/opt3040038
APA StyleDaher, M. G., Trabelsi, Y., Panda, A., Gevorgyan, A. H., Abohassan, K. M., Smirani, L. K., Altahan, B. R., & Rashed, A. N. Z. (2022). Design of a Highly Sensitive Detector Using a Ternary Photonic Crystal (PC) Based on Titanium Nitride Sandwiched between Si and SiO2 for the Creatinine Concentration Detection in the Blood Serum. Optics, 3(4), 447-461. https://doi.org/10.3390/opt3040038