Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shabanov, V.E.; Savvin, Y.U.N.; Alekseev, A.A.; Krutikov, M.G.; Bobrovnikov, A.E.; Demenko, V.V. Klinicheskie Rekomendacii po Okazaniyu Medicinskoj Pomoshchi Postradavshim s Termicheskoj Travmoj v Chrezvychajnyh Situaciyah; Zashchita: Moscow, Russia, 2016; p. 240. [Google Scholar]
- Sidel’nikov, V.O.; Cygan, V.N.; Zinov’ev, E.V. Boevye Ozhogovye Porazheniya; SpecLit: Saint-Petersburg, Russia, 2019; p. 247. [Google Scholar]
- Van Lieshout, E.M.; Van Yperen, D.T.; Van Baar, M.E.; Polinder, S.; Boersma, D.; Cardon, A.Y.; De Rijcke, P.A.; Guijt, M.; Klem, T.M.; Lansink, K.W.; et al. Epidemiology of injuries, treatment (costs) and outcome in patients with burns admitted to the hospital with or without a dedicated burn center (Burn-Pro): Protocol of a multicenter prospective observational study. BMJ 2018, 8, 023709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alekseev, A.A.; Bobrovnikov, A.E.; Bogdanov, V.V. Evaluation of the effectiveness of innovative technologies for the treatment of burn victims. Med. Alfavit 2020, 13, 44–47. [Google Scholar] [CrossRef]
- Ubbink, D.T.; Brolmann, F.E.; Go, P.M.; Vermeule, N.H. Evidence-based care for acute wounds: A perspective. Adv. Wound Care 2015, 4, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agadzhanova, K.V. Burns: Classification and treatment approaches depending on the severity. Colloquium-J. 2020, 1, 4. [Google Scholar]
- Bobrovnikov, A.E.; Alekseev, A.A. Personalized technologies for local treatment of burn wounds. Lechenie I Profil. 2017, 3, 75–78. [Google Scholar]
- Saeidinia, A.A.; Keihanian, F.; Lashari, A.P.; Lahiji, H.G.; Mobayyen, M.; Heidarzade, A.; Golchan, J. Healing of partial-thickness burn wounds with local treatment: A randomized controlled comparison of silver sulfadiazine and santiderma. Medicina 2017, 96, 61–68. [Google Scholar]
- Fayazov, A.D.; Tulyaganov, D.B.; Kamilov, U.R.; Ruzimuratov, D.A. Modern methods of local treatment of burn wounds. Vestn. Ekstrennoj Med. 2019, 12, 43–47. [Google Scholar]
- Tapbergenov, S.O.; Tapbergenov, T.S.; Sovetov, B.S. Funkcional’nye i Metabolicheskie Effekty Simpato-Adrenalovoj Sistemy i Stress; Akademiya Estestvoznaniya: Moscow, Russia, 2019; p. 138. [Google Scholar]
- Podoinitsyna, M.G.; Cepelev, A.V.; Stepanov, V.L. Clinical efficacy of magnetic laser therapy for skin burns. Zabajkal’skij Med. Vestn. 2015, 2, 99–102. [Google Scholar]
- Bailey, J.K.; Blackstone, B.N.; De Bruler, D.M.; Kim, J.Y.; Baumann, M.E.; McFanrland, K.L.; Imeokpana, F.O.; Supp, D.M.; Powell, H.M. Effects of early combinatorial processing of autologous split-thickness skin grafts in the Duroc red pig model using a pulsed dye laser and a fractional CO2 laser. Lazern. Hir. 2018, 50, 78–87. [Google Scholar]
- Moskvin, S.V.; Khadartsev, A.A. EHF-Laser Therapy; Publishing house “Triad”: Tver, Russia, 2016; p. 168. [Google Scholar]
- Vaks, V.L.; Anfertev, V.A.; Balakirev, V.Y.; Basov, S.A.; Domracheva, E.G.; Illyuk, A.V.; Kupriyanov, P.V.; Pripolzin, S.I.; Chernyaeva, M.B. High resolution terahertz spectroscopy for analytical applications. Phys. Usp. 2020, 63, 708–720. [Google Scholar] [CrossRef]
- KVCh-Terapija s Nizkointensivnym Shumovym Izlucheniem; Balchugov, V.A.; Poljakova, A.G.; Anisimov, S.I.; Kornauchov, A.V.N. (Eds.) NGU: Novgorod, Russia, 2002; p. 192. [Google Scholar]
- Kiryanova, V.V.; Zharova, E.N.; Bagraev, N.T.; Reukov, A.S.; Loginova, S.V. Prospects of application of electromagnetic waves of the terahertz range in physiotherapy (retrospective review). Physiother. Balneol. Rehabil. 2016, 4, 209–215. [Google Scholar] [CrossRef]
- Deryugina, A.V.; Talamanova, M.N.; Hlamova, Y.U.N.; Kuvaeva, S.S.; Shabalin, M.A.; Oshevenskij, L.V.; Cvetkov, A.I.; Glavin, M.Y. Adaptive reactions of red blood cells under the action of electromagnetic radiation of the terahertz range. Mezhdunarodnyj Nauchno-Issledovatel’skij Zhurnal 2017, 1–2, 6–8. [Google Scholar]
- Soloveva, A.G.; Polyakova, A.G.; Peretyagin, P.V.; Didenko, N.V. The influence of terahertz radiation on biochemical metabolism of blood in the experiment. EPJ Web Conf. 2018, 195, 32–33. [Google Scholar] [CrossRef] [Green Version]
- Lukin, S.Y.; Soldatov, Y.P.; Stogov, M.V. Complex correction of pathophysiological disorders in orthopedic and traumatological patients with the use of electromagnetic waves of the terahertz range at the frequencies of nitric oxide radiation. Vopr. Kurortol. Fizioter. I Lech. Fiz. Kul’tury 2018, 95, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Polyakova, A.G. Microwave Reflexotherapy in the Complex Rehabilitation of Patients with Traumatological and Orthopedic Profile Textbook Nizhny; PIMU: Novgorod, Russia, 2020; p. 56. [Google Scholar]
- Spasova, N.V.; Razumov, A.N.; Lyubovcev, V.B. The role of acupuncture points in the interaction of the human body with the interplanetary electromagnetic field. Vestn. Vosstanov. Med. 2007, 4, 103–104. [Google Scholar]
- Savin, L.A.; Panov, G.A.; Makashova, E.S. Neurophysiological changes that occur during the reflexotherapy procedure. Refleksoterapiya I Komplement. Med. 2017, 4, 25–26. [Google Scholar]
- Parshina, S.S.; Afanasyeva, T.N.; Vodolagin, A.V.; Petrova, V.D.; Ushakov VYu Kaplanova, T.I.; Potapova, M.V.; Ramazanova, Z.G. Terahertz therapy at frequencies of the molecular spectrum of nitric oxide: Results and prospects of clinical use. Sarat. Nauchno-Med. Zhurnal 2019, 15, 800–806. [Google Scholar]
- Subbotina, T.I.; Yashin, A.A. Effects of interaction of electromagnetic fields with biosystems. Vestn. Novyh Med. Tekhnologij Elektron. Zhurnal 2018, 4, 1–20. [Google Scholar]
- Peretyagin, P.V.; Solov’eva, A.G.; Luzan, A.S.; Vorob’ev, E.V.; Didenro, N.V. Ustrojstvo Dlya Esperimental’nogo Modelirovaniya Termicheskoj Travmy Kozhi. RU Patent 179 126 U1 MПK A61B 18/04, 26 April 2018. [Google Scholar]
- Sirota, T.V. A new approach to the study of the epinephrine auto-oxidation reaction: The possibility of polarographic determination of the activity of superoxide dismutase and the antioxidant properties of various drugs. Biomed. Him. 2012, 58, 77–87. [Google Scholar]
- Sibgatullina, G.V.; Haertdinova, L.R.; Gumerova, E.A.; Akulov, A.N.; Kostyukova, Y.U.A.; Nikonorova, N.A.; Rumyanceva, N.I. Metody Opredeleniya Redoks-Statusa Kul’tiviruemyh Kletok Rastenij:Uchebno-Metodicheskoe Posobie; Kazanskij (Privolzhskij) Federal’nyj Universitet: Kazan, Russia, 2011; p. 61. [Google Scholar]
- Kozlov, V.I.; Azolov, G.A.; Gurova, O.A.; Litvin, F.B. Lazernaya Dopplerovskaya Floumetriya v Ocenke Sostoyaniya i Rasstrojstv Mikrocirkulyacii Krovi. Metodicheskoe Posobie; RUDN GNC Lazer. Med.: Moscow, Russia, 2012; p. 32. [Google Scholar]
- Krupatkin, A.I.; Sidorov, V.V. Funkcional’naya Diagnostika Sostoyaniya Mikrocirkulyatorno-Tkanevyh Sistem: Kolebaniya, Informaciya, Nelinejnost’; Rukovodstvo Dlya Vrachej; Knizhnyj dom “LIBROKOM”: Moscow, Russia, 2013; p. 496. [Google Scholar]
- Martusevich, A.K.; Peretyagin, S.P.; Samodelkin, A.G.; Solov’eva, A.G.; Martusevich, A.A.; Ivashchenko, M.N. Biomedicina Oksida Azota (NO): Funkcional’no-Metabolicheskie Aspekty; Nizhegorodskaya Gosudarstvennaya Sel’skohozyajstvennaya Akademiya: Nizhny Novgorod, Russia, 2017; p. 261. [Google Scholar]
- Ushakova, T.A. Adaptation to Burn Injury: Problems and Prospects. Kombustiologiya 2009, 39. Available online: http://combustiolog.ru/journal/adaptatsiya-k-ozhogovoj-travme-problemy-i-perspektivy/ (accessed on 17 January 2022).
- Dmitriev, G.I.; Aref’ev, I.Y.U.; Korotkova, N.L.; Belousov, S.S.; Poyato, T.V.; Men’shenina, E.G.; Poluakova, A.G. Improving the rehabilitation of patients with the consequences of burn injury. Med. Al’manah 2010, 2, 225–228. [Google Scholar]
- Ivanov, D.V.; Lischuk, A.N.; Borisova, O.N. Effects of low-energy electromagnetic radiation of high frequencies when exposed to cells (literature review). Bulletin of New Medical Technologies. Electron. Ed. 2020, 3, 143–152. [Google Scholar]
Groups Biochemical Parameters | Control 1 (Intact) | Control 2 (CThB) | Experiment 3 53.57–78.33 GHz | Experiment 4 130.0–170.0 GHz |
---|---|---|---|---|
GR, nmol NADPH/min × mg of protein | 89.99 ± 7.10 | 62.03 ± 5.24 * | 68.88 ± 2.67 * | 75.94 ± 6.02 ** |
Gl-6-fDH, nmol NADPH/min × mg of protein | 42.03 ± 2.11 | 30.23 ± 1.44 * | 35.90 ± 2.00 */** | 37.42 ± 1.00 */** |
LDHdir, nmol NADH/min × mg of protein | 39.78 ± 3.12 | 24.27 ± 1.09 * | 29.55 ± 0.89 */** | 30.90 ± 1.04 */** |
LDHrev, nmol NADH/min × mg of protein | 164.54 ± 13.34 | 114.85 ± 10.06 * | 128.97 ± 7.53 * | 139.64 ± 6.10 */** |
LPOplasma, RVU | 10.58 ± 0.52 | 14.99 ± 0.75 * | 12.50 ± 0.68 */** | 12.15 ± 0.59 */** |
TAA, RVU | 0.91 ± 0.03 | 0.51 ± 0.02 * | 0.79 ± 0.03 */** | 0.59 ± 0.02 */** |
LPOerythrocytes, RVU | 9.79 ± 0.411 | 10.47 ± 0.44 * | 7.82 ± 0.33 */** | 9.35 ± 0.47 ** |
SOD, RVU/mg of protein | 917.67 ± 21.11 | 332.52 ± 7.65 * | 613.35 ± 14.32 */** | 702.52 ± 15.66 */** |
Catalase, RVU/mg of protein | 30.24 ± 1.01 | 17.56 ± 0.98 * | 21.99 ± 1.53 */** | 25.38 ± 1.11 */** |
MDAplasma, micmol/L | 1.07 ± 0.01 | 1.19 ± 0.09 * | 0.99 ± 0.02 */** | 1.025 ± 0.06 ** |
MDAerythrocytes, micmol/L | 5.95 ± 0.07 | 10.97 ± 1.23 * | 8.79 ± 0.28 */** | 10.12 ± 1.23 * |
Parameters | LI EMR 130.0–170.0 GHz (n = 18) | LI EMR 53.57–78.33 GHz (n = 11) | ||||
---|---|---|---|---|---|---|
Exposure Time (min) | Exposure Time (min) | |||||
дo | 5 | 30 | дo | 5 | 30 | |
R, min | 9.90 [8.00; 10.8] | 7.15 * [6.00; 8.60] | 7.60 * [6.70; 9.20] | 7.8 [6.2; 9.8] | 6.2 * [5.5; 7.7] | 6.3 * [5.2; 7.2] |
k, min | 2.20 [2.10; 2.70] | 2.15 [1.60; 2.90] | 3.55 *,** [2.60; 4.40] | 2.2 [1.2; 2.7] | 1.8 * [1.2; 2.7] | 1.5 * [1.2; 2.0] |
alfa, deg | 59.6 [55.8; 64.3] | 61.2 [53.0; 67.7] | 50.8 *,** [42.3; 60.2] | 68.4 [57.0; 74.1] | 70.0 [65.5; 73.3] | 69.3 [65.9; 74.0] |
MA, mm | 61.6 [60.6; 62.9] | 61.9 * [54.1; 64.8] | 58.5 *,** [52.3; 63.0] | 68.4 [64.2; 73.8] | 70,5 [68.1; 74.6] | 68.7 [66.8; 73.5] |
G, d/sc | 8.20 [7.80; 12.7] | 8.60 * [6.00; 9.80] | 7.50 *,** [5.80; 8.60] | 10.3 [8.8; 14.1] | 11.1 [10.6; 16.1] | 10.7 [9.7; 12.7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakova, A.G.; Soloveva, A.G.; Peretyagin, P.V.; Presnyakova, M.V.; Vaks, V.; Kornaukhov, A.V. Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn. Optics 2022, 3, 35-43. https://doi.org/10.3390/opt3010004
Polyakova AG, Soloveva AG, Peretyagin PV, Presnyakova MV, Vaks V, Kornaukhov AV. Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn. Optics. 2022; 3(1):35-43. https://doi.org/10.3390/opt3010004
Chicago/Turabian StylePolyakova, Alla Georgievna, Anna Gennadievna Soloveva, Petr Vladimirovich Peretyagin, Marina Vladimirovna Presnyakova, Vladimir Vaks, and Alexander Vasilyevich Kornaukhov. 2022. "Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn" Optics 3, no. 1: 35-43. https://doi.org/10.3390/opt3010004
APA StylePolyakova, A. G., Soloveva, A. G., Peretyagin, P. V., Presnyakova, M. V., Vaks, V., & Kornaukhov, A. V. (2022). Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn. Optics, 3(1), 35-43. https://doi.org/10.3390/opt3010004