Tensile Properties of 3D-Printed Jute-Reinforced Composites via Stereolithography
Abstract
1. Introduction
2. Materials and Experimental Procedures
2.1. Jute Fiber
2.2. Composite Fabrication Method
2.3. Tensile Testing
2.4. FTIR Spectroscopy
2.5. Optical Microscopy
3. Results
3.1. FTIR Spectra of 3D-Printed Resin Material
3.2. Tensile Tests of 3D-Printed Resin and the Jute Fiber-Reinforced Composites
3.3. Effect of Printing Layer Thickness on Tensile Strength
3.4. Comparative Study with the Literature
3.4.1. Comparison with Conventional Jute Fiber-Reinforced Composite Fabrication Method
3.4.2. Comparison with 3D-Printed Nonwoven Mats
4. Discussion
5. Conclusions
- The tensile strength of 3D SLA-printed jute-reinforced composite demonstrated significant improvement in ultimate tensile strength, with an enhancement of approximately 84% compared to pure resin.
- The average ultimate tensile strength rises as the printing layer thickness increases, with the maximum strength observed at a printing layer thickness of 0.1 mm.
- Optical examination of the fiber–matrix interface revealed a wavy pattern. This wavy interface acts as a mechanical interlock under tensile loads, thereby leading to a significant enhancement in the ultimate tensile strength of the 3D-printed jute-reinforced composite material.
- The strength of the composites examined in this study was found to be comparable to that of glass fiber mat–epoxy composites. This demonstrates that SLA-printed jute fiber-reinforced composites can broaden the application of 3D printing to manufacture load-bearing components that are typically challenging to produce using traditional composite fabrication techniques.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Wang, Y.; Lyu, P.; Hu, S.; Yang, L.; Gao, G. Rethinking the carbon dioxide emissions of road sector: Integrating advanced vehicle technologies and construction supply chains mitigation options under decarbonization plans. J. Clean. Prod. 2021, 321, 128769. [Google Scholar] [CrossRef]
- Chard, J.M.; Basson, L.; Creech, G.; Jesson, D.A.; Smith, P.A. Shades of Green: Life Cycle Assessment of a Urethane Methacrylate/Unsaturated Polyester Resin System for Composite Materials. Sustainability 2019, 11, 1001. [Google Scholar] [CrossRef]
- Kumar, A.; Jyske, T.; Möttönen, V. Properties of injection molded biocomposites reinforced with wood particles of short-rotation aspen and willow. Polymers 2020, 12, 257. [Google Scholar] [CrossRef] [PubMed]
- Righetti, M.C.; Cinelli, P.; Mallegni, N.; Massa, C.A.; Aliotta, L.; Lazzeri, A. Thermal, mechanical, viscoelastic and morphological properties of poly(lactic acid) based biocomposites with potato pulp powder treated with waxes. Materials 2019, 12, 990. [Google Scholar] [CrossRef]
- Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef]
- Binoj, J.S.; Raj, R.E.; Hassan, S.A.; Mariatti, M.; Siengchin, S.; Sanjay, M.R. Characterization of discarded fruit waste as substitute for harmful synthetic fiber-reinforced polymer composites. J. Mater. Sci. 2020, 55, 8513–8525. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sundarakannan, R.; John, K.M.; Deepak Joel Johnson, R.; Arun Prasath, K.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M. Recent advancement in the natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2020, 277, 124109. [Google Scholar] [CrossRef]
- Yashas Gowda, T.G.; Sanjay, M.R.; Subrahmanya Bhat, K.; Madhu, P.; Senthamaraikannan, P.; Yogesha, B. Polymer matrix-natural fiber composites: An overview. Cogent Eng. 2018, 5, 1. [Google Scholar] [CrossRef]
- Gon, D.; Das, K.; Paul, P.; Maity, S. Jute composites as wood substitute. Int. J. Text. Sci. 2012, 1, 84–93. [Google Scholar] [CrossRef]
- Zakaria, M.; Ahmed, M.; Hoque, M.; Shaid, A. A Comparative Study of the Mechanical Properties of Jute Fiber and Yarn Reinforced Concrete Composites. J. Nat. Fibers 2020, 17, 676–687. [Google Scholar] [CrossRef]
- Sinha, A.K.; Narang, H.K.; Bhattacharya, S. Mechanical properties of natural fibre polymer composites. J. Polym. Eng. 2017, 37, 879–895. [Google Scholar] [CrossRef]
- Islam, M.M. Varietal Advances of Jute, Kenaf and Mesta Crops in Bangladesh: A Review. Int. J. Bioorg. Chem. 2019, 4, 24. [Google Scholar]
- Rabbi, M.S.; Islam, T.; Bhuiya, M.M. Jute fiber reinforced polymer composite: A comprehensive review. IJMPERD 2020, 10, 3053–3072. [Google Scholar]
- Zuhudi, N.Z.M.; Zulkifli, A.F.; Zulkifli, M.; Yahaya, A.N.A.; Nur, N.M.; Aris, K.D.M. Voids and Moisture Content of Fiber Reinforced Composites. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 87, 78–93. [Google Scholar] [CrossRef]
- Rajendran Royan, N.R.; Leong, J.S.; Chan, W.N.; Tan, J.R.; Shamsuddin, Z.S.B. Current State and Challenges of Natural Fibre-Reinforced Polymer Composites as Feeder in FDM-Based 3D Printing. Polymers 2021, 13, 2289. [Google Scholar] [CrossRef]
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A review on composite materials and process parameters optimization for the fused deposition modelling process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- Franco-Urquiza, E.A.; Escamilla, Y.R.; Llanas, P.I.A. Characterization of 3D Printing on Jute Fabrics. Polymers 2021, 13, 3202. [Google Scholar] [CrossRef]
- Hinchcliffe, S.A.; Hess, K.M.; Srubar, W.V. Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Compos. B Eng. 2016, 95, 346–354. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.-K.; Asahara, H.; Horiguchi, K. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016, 6, 23058. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollic, F. In-process measurements of flow characteristics of wood plastic composites. J. Polym. Environ. 2017, 25, 1044–1050. [Google Scholar] [CrossRef]
- Van den Oever, M.J.A.; Beck, B.; Müssig, J. Agrofibre reinforced poly (lactic acid) composites: Effect of moisture on degradation and mechanical properties. Compos. A Appl. Sci. Manu. 2010, 41, 1628–1635. [Google Scholar] [CrossRef]
- Filgueira, D.; Holmen, S.; Melbø, J.K.; Moldes, D.; Echtermeyer, A.T.; Chinga-Carrasco, G. Enzymatic-assisted modification of thermomechanical pulp fibers to improve the interfacial adhesion with poly (lactic acid) for 3D printing. ACS Sustain. Chem. Eng. 2017, 5, 9338–9346. [Google Scholar] [CrossRef]
- Osman, M.A.; Atia, M.R. Investigation of ABS-rice straw composite feedstock filament for FDM. J. Rapid Prototyp. 2018, 24, 1067–1075. [Google Scholar]
- Sano, Y.; Matsuzaki, R.; Ueda, M.; Todoroki, A.; Hirano, Y. 3D printing of discontinuous and continuous fiber composites using stereolithography. Addit. Manuf. 2018, 24, 521–527. [Google Scholar]
- Zhang, S.; Li, M.; Hao, N.; Ragauska, A.J. Stereolitography 3D printing of Lignin Reinforced Composites with Enhanced Mechanical Properties. ACS Omega 2019, 4, 20197–20204. [Google Scholar] [CrossRef]
- Karalekas, D.E. Study of the mechanical properties of nonwoven fibre mat reinforced photopolymers used in rapid prototyping. Mater. Des. 2003, 24, 665–670. [Google Scholar] [CrossRef]
- Ramírez-Hekrrera, C.A.; Cruz, I.C.; Jiménez-Cedeño, I.H.; Martínez-Romero, O.M.; Elías-Zúñiga, A. Influence of the Epoxy Resing Process Parameters on the Mechanical Properties of Produced Bidirectional Canbon/Epoxy Woven Composites. Polymers 2021, 13, 1273. [Google Scholar] [CrossRef]
- Chen, J.; Lu, J.; Zhou, X. Adhesion properties of bio-based resins and their interaction with natural fibers in composite materials. J. Compos. Mater. 2021, 55, 1539–1550. [Google Scholar]
- Zhang, W.; Yin, L.; Zhao, M.; Tan, Z.; Li, G. Rapid and non-destructive quality verification of epoxy resin product using ATR-FTIR spectroscopy coupled with chemometric methods. Micromech. J. 2021, 168, 106397. [Google Scholar] [CrossRef]
- May, C.A. Epoxy Resins: Chemistry and Technology; Marcel Dekker, Inc.: New York, NY, USA, 1988; pp. 305–320. [Google Scholar]
- Cecen, V.; Seki, Y.; Sarikanat, M.; Tavman, I.H. FTIR and SEM Analysis of Polyester- and Epoxy-Based Composites Manufactured by VARTM Process. J. Appl. Polym. Sci. 2008, 108, 2163–2170. [Google Scholar] [CrossRef]
- Hong, C.K.; Hwang, I.; Kim, N.; Park, D.H.; Hwang, B.S.; Nah, C. Mechanical properties of silanized jute-polypropylene composites. J. Industr. Eng. Chem. 2008, 14, 71–76. [Google Scholar] [CrossRef]
- Singh, A.A.; Palsule, S. Jute fiber reinforced chemically functionalized polypropylene self-compatibilizing composites by Palsule process. J. Compos. Mater. 2015, 50, 1199–1212. [Google Scholar] [CrossRef]
- Wang, H.; Memon, H.; Hassan, E.A.M.; Miah, M.S.; Ali, M.A. Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials 2019, 12, 1226. [Google Scholar] [CrossRef]
- Gopinath, A.; Kumar, S.; Elayaperumal, A. Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Eng. 2014, 97, 2052–2063. [Google Scholar] [CrossRef]
- Ahamed, B.; Hasan, M.; Azim, A.Y.M.A.; Saifullarh, A.; Alimuzzaman, A.; Dhakal, H.N.; Sarker, F. High-performance short jute fiber preforms for thermoset composite applications. Compos. Part C 2022, 9, 100318. [Google Scholar]
- Bledzki, A.K.; Jaszkiewicz, A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibers-a comparative study to PP. Compos. Sci. Technol. 2010, 70, 1687–1696. [Google Scholar] [CrossRef]
- Rahman, M.R.; Huque, M.M.; Islam, M.N.; Hasan, M. Improvement of physic-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment. Compos. A Appl. Sci. Manuf. 2008, 39, 1739–1747. [Google Scholar] [CrossRef]
- Huang, S.; Fu, Q.; Yan, L.; Kasal, B. Characterization of interfacial properties between fibre and polymer matrix in composite materials-A critical review. J. Mater. Res. Technol. 2021, 13, 1441–1484. [Google Scholar] [CrossRef]
- Ambrosio, D.; Gabrion, X.; Malecot, P.; Amiot, P.; Thibaud, S. Influence of manufacturing parameters on the mechanical properties of projection sterolithography manufactured specimens. Int. J. Adv. Manuf. Technol. 2020, 106, 265–277. [Google Scholar] [CrossRef]
- Chockalingam, K.; Jawahar, N.; Chandrasekhar, U. Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp. J. 2006, 12, 106–113. [Google Scholar] [CrossRef]
- Chockalingam, K.; Jawahar, N.; Chandrasekhar, U. Establishment of process model for part strength in stereolithography. J. Mater. Process. Technol. 2008, 208, 348–365. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
Material | Printing Layer Thickness (mm) | Ultimate Tensile Strength (MPa) | % Improvement |
---|---|---|---|
Resin | 0.10 | 20.4 ± 1.7 | - |
3D-printed jute-reinforced composite | 0.025 | 34.8 ± 3.7 | 70.6% |
0.05 | 35.8 ± 2.95 | 75.5% | |
0.075 | 37.2 ± 3.5 | 82.4% | |
0.10 | 37.6 ± 3.9 | 84.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Mohiv, A.; Tauhiduzzaman, M.; Kharshiduzzaman, M.; Khan, M.E.; Haque, M.R.; Bhuiyan, M.S. Tensile Properties of 3D-Printed Jute-Reinforced Composites via Stereolithography. Appl. Mech. 2024, 5, 773-785. https://doi.org/10.3390/applmech5040043
Rahman MA, Mohiv A, Tauhiduzzaman M, Kharshiduzzaman M, Khan ME, Haque MR, Bhuiyan MS. Tensile Properties of 3D-Printed Jute-Reinforced Composites via Stereolithography. Applied Mechanics. 2024; 5(4):773-785. https://doi.org/10.3390/applmech5040043
Chicago/Turabian StyleRahman, M. Azizur, Arafath Mohiv, M. Tauhiduzzaman, Md. Kharshiduzzaman, Md. Ershad Khan, Mohammad Rejaul Haque, and Md. Shahnewaz Bhuiyan. 2024. "Tensile Properties of 3D-Printed Jute-Reinforced Composites via Stereolithography" Applied Mechanics 5, no. 4: 773-785. https://doi.org/10.3390/applmech5040043
APA StyleRahman, M. A., Mohiv, A., Tauhiduzzaman, M., Kharshiduzzaman, M., Khan, M. E., Haque, M. R., & Bhuiyan, M. S. (2024). Tensile Properties of 3D-Printed Jute-Reinforced Composites via Stereolithography. Applied Mechanics, 5(4), 773-785. https://doi.org/10.3390/applmech5040043