A Radiomics-Based Machine Learning Model for Predicting Pneumonitis During Durvalumab Treatment in Locally Advanced NSCLC
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. CT Acquisition and Image Evaluation
2.3. Definition and Evaluation of Pneumonitis During Durvalumab Treatment
2.4. Radiomics Workflow and Predictive Model Development
2.4.1. Image Preprocessing and Auto-Segmentation
2.4.2. Radiomics Feature Extraction
2.4.3. Feature Selection and Class Imbalance Handling
2.4.4. Machine Learning Model Construction and Validation
2.5. Statistical Analysis
3. Results
3.1. Overview of the Results
3.2. Patient Characteristics
3.3. Incidence and Severity of Pneumonitis During Durvalumab Treatment
3.4. Clinical and Radiotherapeutic Characteristics by Pneumonitis Grade
3.5. Risk Factors for Grade ≥ 2 Pneumonitis
3.6. ROC Analysis for Grade ≥ 2 Pneumonitis Using V20 and ILAs
3.7. Radiomics Feature Selection
3.8. Predictive Modeling of Grade ≥ 2 Pneumonitis Using Radiomics Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Giobbie-Hurder, A.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016, 2, 1607–1616. [Google Scholar] [CrossRef]
- Wu, J.; Hong, D.; Zhang, X.; Lu, X.; Miao, J. PD-1 inhibitors increase the incidence and risk of pneumonitis in cancer patients in a dose-independent manner: A meta-analysis. Sci. Rep. 2017, 7, 44173. [Google Scholar] [CrossRef]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Noh, J.M.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Ahn, M.J.; Pyo, H.; Ahn, Y.C.; Park, K. Real world data of durvalumab consolidation after chemoradiotherapy in stage III non-small-cell lung cancer. Lung Cancer 2020, 146, 23–29. [Google Scholar] [CrossRef]
- Mayahara, H.; Uehara, K.; Harada, A.; Kitatani, K.; Yabuuchi, T.; Miyazaki, S.; Ishihara, T.; Kawaguchi, H.; Kubota, H.; Okada, H.; et al. Predicting factors of symptomatic radiation pneumonitis induced by durvalumab following concurrent chemoradiotherapy in locally advanced non-small cell lung cancer. Radiat. Oncol. 2022, 17, 7. [Google Scholar] [CrossRef]
- Miura, Y.; Mouri, A.; Kaira, K.; Yamaguchi, O.; Shiono, A.; Hashimoto, K.; Nishihara, F.; Shinomiya, S.; Akagami, T.; Murayama, Y.; et al. Chemoradiotherapy followed by durvalumab in patients with unresectable advanced non-small cell lung cancer: Management of adverse events. Thorac. Cancer 2020, 11, 1280–1287. [Google Scholar] [CrossRef]
- Saito, G.; Oya, Y.; Taniguchi, Y.; Kawachi, H.; Daichi, F.; Matsumoto, H.; Iwasawa, S.; Suzuki, H.; Niitsu, T.; Miyauchi, E.; et al. Real-world survey of pneumonitis and its impact on durvalumab consolidation therapy in patients with non-small cell lung cancer who received chemoradiotherapy after durvalumab approval (HOPE-005/CRIMSON). Lung Cancer 2021, 161, 86–93. [Google Scholar] [CrossRef]
- Shintani, T.; Kishi, N.; Matsuo, Y.; Ogura, M.; Mitsuyoshi, T.; Araki, N.; Fujii, K.; Okumura, S.; Nakamatsu, K.; Kishi, T.; et al. Incidence and Risk Factors of Symptomatic Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients Treated with Concurrent Chemoradiotherapy and Consolidation Durvalumab. Clin. Lung Cancer 2021, 22, 401–410. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, K.; Bi, N.; Zhang, L.; Jiang, W.; Liang, J.; Deng, L.; Wang, X.; Wang, J.; Wang, J.; et al. Efficacy and safety of immune checkpoint inhibitor consolidation after chemoradiation in patients of Asian ethnicity with unresectable stage III non-small cell lung cancer: Chinese multicenter report and literature review. Thorac. Cancer 2020, 11, 2916–2923. [Google Scholar] [CrossRef]
- Hatabu, H.; Hunninghake, G.M.; Lynch, D.A. Interstitial Lung Abnormality: Recognition and Perspectives. Radiology 2019, 291, 1–3. [Google Scholar] [CrossRef]
- Hatabu, H.; Hunninghake, G.M.; Richeldi, L.; Brown, K.K.; Wells, A.U.; Remy-Jardin, M.; Verschakelen, J.; Nicholson, A.G.; Beasley, M.B.; Christiani, D.C.; et al. Interstitial lung abnormalities detected incidentally on CT: A Position Paper from the Fleischner Society. Lancet Respir. Med. 2020, 8, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Daido, W.; Masuda, T.; Imano, N.; Matsumoto, N.; Hamai, K.; Iwamoto, Y.; Takayama, Y.; Ueno, S.; Sumii, M.; Shoda, H.; et al. Pre-Existing Interstitial Lung Abnormalities Are Independent Risk Factors for Interstitial Lung Disease during Durvalumab Treatment after Chemoradiotherapy in Patients with Locally Advanced Non-Small-Cell Lung Cancer. Cancers 2022, 14, 6236. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, D.; Imano, N.; Nishioka, R.; Ogawa, K.; Kimura, T.; Nakashima, T.; Iwamoto, H.; Fujitaka, K.; Hattori, N.; Nagata, Y. Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis. Sci. Rep. 2021, 11, 16232. [Google Scholar] [CrossRef] [PubMed]
- Krafft, S.P.; Rao, A.; Stingo, F.; Briere, T.M.; Court, L.E.; Liao, Z.; Martel, M.K. The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis. Med. Phys. 2018, 45, 5317–5324. [Google Scholar] [CrossRef]
- Parmar, C.; Grossmann, P.; Rietveld, D.; Rietbergen, M.M.; Lambin, P.; Aerts, H.J. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Front. Oncol. 2015, 5, 272. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Yan, M.; Yu, J.; Dekker, A.; Zhao, L.; Wee, L. Radiomics and Dosiomics Signature From Whole Lung Predicts Radiation Pneumonitis: A Model Development Study With Prospective External Validation and Decision-curve Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 746–758. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_50 (accessed on 18 October 2024).
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Risoli, C.; Nicolò, M.; Colombi, D.; Moia, M.; Rapacioli, F.; Anselmi, P.; Michieletti, E.; Ambrosini, R.; Di Terlizzi, M.; Grazioli, L.; et al. Different Lung Parenchyma Quantification Using Dissimilar Segmentation Software: A Multi-Center Study for COVID-19 Patients. Diagnostics 2022, 12, 1501. [Google Scholar] [CrossRef]
- Zaffino, P.; Marzullo, A.; Moccia, S.; Calimeri, F.; De Momi, E.; Bertucci, B.; Arcuri, P.P.; Spadea, M.F. An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics. Bioengineering 2021, 8, 26. [Google Scholar] [CrossRef]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef]
- Li, F.; Zhou, Z.; Wu, A.; Cai, Y.; Wu, H.; Chen, M.; Liang, S. Preexisting radiological interstitial lung abnormalities are a risk factor for severe radiation pneumonitis in patients with small-cell lung cancer after thoracic radiation therapy. Radiat. Oncol. 2018, 13, 82. [Google Scholar] [CrossRef]
- Palma, D.A.; Senan, S.; Tsujino, K.; Barriger, R.B.; Rengan, R.; Moreno, M.; Bradley, J.D.; Kim, T.H.; Ramella, S.; Marks, L.B.; et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: An international individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, S.; Jia, X.; Zhang, X.; Li, X.; Pan, L.; Li, Z.; Niu, G.; Liang, T.; Guo, H. Radiomics Biomarkers to Predict Checkpoint Inhibitor Pneumonitis in Non-small Cell Lung Cancer. Acad. Radiol. 2025, 32, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.Y.; Du, X.Z.; Xu, R.; Chen, T.; Wu, Y.; Wu, X.J.; Liu, S. Development and Validation of a Machine Learning-Based Model Using CT Radiomics for Predicting Immune Checkpoint Inhibitor-related Pneumonitis in Patients With NSCLC Receiving Anti-PD1 Immunotherapy: A Multicenter Retrospective Case Control Study. Acad. Radiol. 2024, 31, 2128–2143. [Google Scholar] [CrossRef]
- Kraus, K.M.; Oreshko, M.; Bernhardt, D.; Combs, S.E.; Peeken, J.C. Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition. Front. Oncol. 2023, 13, 1124592. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H.M.T.; Hippe, D.S.; Forouzannezhad, P.; Sasidharan, B.K.; Kinahan, P.E.; Miyaoka, R.S.; Vesselle, H.J.; Rengan, R.; Zeng, J.; Bowen, S.R. Radiation and immune checkpoint inhibitor-mediated pneumonitis risk stratification in patients with locally advanced non-small cell lung cancer: Role of functional lung radiomics? Discov. Oncol. 2022, 13, 85. [Google Scholar] [CrossRef]
- Giuranno, L.; Ient, J.; De Ruysscher, D.; Vooijs, M.A. Radiation-Induced Lung Injury (RILI). Front. Oncol. 2019, 9, 877. [Google Scholar] [CrossRef] [PubMed]


| Characteristics of the Enrolled Patients | Patients, No. (%) (n = 123) |
|---|---|
| Age (years) median (range) | 71 (49–86) |
| Sex Male/Female | 88 (71.5)/35 (28.5) |
| Body mass index median (range) | 21.2 (13.4–31.2) |
| ECOG performance status 0/1/2/3 | 90 (73.2)/29 (23.6)/3 (2.4)/1 (0.8) |
| Smoking history Never smokers/Former or current smokers | 19 (15.1)/107 (84.9) |
| Brinkman index median (range) | 800 (0–3840) |
| History of autoimmune disease +/− | 6 (4.9)/117 (95.1) |
| Clinical stage at diagnosis stage II/stage III/postoperative recurrence | 9 (7.3)/111 (90.2)/3 (2.5) |
| Histological subtype Adenocarcinoma/squamous cell carcinoma/others | 64 (52.0)/52 (42.3)/7 (5.7) |
| Baseline laboratory parameters | Median (range) (n = 123) |
| White blood cell count (/μL) | 3900 (1300–11,900) |
| Lymphocyte count (/μL) | 730 (180–5000) |
| C-reactive protein (mg/dL) | 0.512 (0–13.58) |
| KL-6 (U/mL) | 297 (116–2221) |
| SpO2 (%) | 98 (92–100) |
| Chemoradiotherapy-related information | Patients, No. (%) (n = 123) |
| Concurrent chemotherapy regimen | |
| Weekly carboplatin plus paclitaxel | 71 (57.7) |
| Cisplatin plus S-1 | 13 (10.6) |
| Cisplatin plus vinorelbine | 32 (26.0) |
| Daily carboplatin | 4 (3.3) |
| Cisplatin plus docetaxel | 3 (2.4) |
| Total radiation dose, Gy median (range) | 63 (40–70) |
| V5 (%) median (range) | 42.3 (11.5–69.8) |
| V20 (%) median (range) | 22.3 (2.9–38.6) |
| Mean lung dose (Gy) median (range) | 12.3 (3.1–19.2) |
| Details of radiotherapy technique, (%) 3D-CRT/IMRT/3D + IMRT | 79 (64.2)/41 (33.3)/3 (2.5) |
| Interval from completion of CRT to durvalumab initiation (days) median (range) | 16 (1–54) |
| CT findings | Patients, No. (%) (n = 123) |
| IP +/− | 2 (1.6)/121 (98.4) |
| ILAs +/− | 44 (35.7)/79 (64.3) |
| Emphysema +/− | 70 (56.9)/53 (43.1) |
| Characteristics | Patients, No. (%) (n = 123) |
|---|---|
| No pneumonitis | 45 (36.7) |
| CTCAE grade of pneumonitis All 1 2 3 | 78 (63.4) 34 (27.6) 33 (26.8) 11 (8.9) |
| Patients with pneumonitis (n = 78) | |
| Discontinuation of durvalumab treatment + − | 34 (43.6) 44 (56.4) |
| Use of systemic corticosteroids + − | 36 (46.2) 42 (53.8) |
| Characteristics of the Enrolled Patients | Grade ≤ 1, n = 79 | Grade ≥ 2, n = 44 | p-Value |
|---|---|---|---|
| Age, (years) median (range) | 70 (49–86) | 73 (51–85) | 0.002 |
| Sex, (%) Male/Female | 53 (67.1)/26 (32.9) | 35 (79.5)/9 (20.5) | 0.142 |
| Body mass index median (range) | 20.8 (13.4–31.2) | 21.2 (16.4–28.3) | 0.368 |
| ECOG- performance status, (%) 0/≥1 | 62 (78.5)/17 (21.5) | 28 (63.6)/16 (36.4) | 0.78 |
| Smoking status, (%) Non-smokers/former or current smokers | 12 (15.2)/67 (84.8) | 7 (15.9)/37 (84.1) | 0.915 |
| Brinkman Index median (range) | 800 (0–2500) | 880 (0–3840) | 0.107 |
| Autoimmune disease, (%) +/− | 4 (5.1)/75 (94.9) | 2 (4.6)/42 (95.4) | 0.897 |
| Histology, (%) Ad/non-Ad | 45 (56.9)/34 (43.1) | 19 (43.2)/25 (56.8) | 0.142 |
| Clinical stage, (%) II/III/postoperative recurrence | 6 (7.6)/71 (89.9)/ 2 (2.5) | 4 (9.1)/39 (88.6)/ 1 (2.3) | 0.956 |
| Baseline laboratory parameters | |||
| White blood cell count (/μL) median (range) | 4380 (1700–9200) | 3550 (1300–111,900) | 0.076 |
| Lymphocyte count (/μL), median (range) | 798 (210–2140) | 688 (180–5000) | 0.762 |
| C-reactive protein (mg/dL), median (range) | 0.56 (0.02–13.58) | 0.48 (0–4.70) | 0.948 |
| KL-6 (U/mL), median (range) | 275 (116–869) | 315 (135–2221) | 0.153 |
| Information of CRT | |||
| Concurrent chemotherapy | |||
| Weekly caboplatin + paclitaxel +/− | 38 (48.1)/41 (51.9) | 27 (61.4)/17 (38.6) | 0.157 |
| Total irradiation dose, Gy median (range) | 63 (40–70) | 63 (50–70) | 0.561 |
| V5, %, (%) median (range) | 40.6 (10.7–83.2) | 46.8 (24–78.9) | 0.001 |
| V20, %, (%) median (range) | 20.1 (2.9–38.6) | 22.8 (7–29.8) | 0.007 |
| Mean lung dose, Gy median (range) | 11.3 (2.8–18.8) | 12.9 (5.3–19.2) | <0.001 |
| Details of radiotherapy technique 3D-CRT/IMRT/3D + IMRT | 52 (65.8)/26 (33.0)/ 1 (1.2) | 27 (61.4)/15 (34.1)/ 2 (4.5) | 0.524 |
| Interval from completion of CRT to durvalumab initiation (days) median (range) | 18 (1–53) | 15 (1–54) | 0.488 |
| CT findings | |||
| IP, (%) +/− | 1 (1.2)/78 (98.8) | 1 (2.3)/43 (97.7) | 0.679 |
| ILAs (%) +/− | 17 (23.3)/56 (76.7) | 27 (54.0)/23 (46.0) | <0.001 |
| Emphysema, (%) +/− | 42 (53.2)/37 (46.8) | 28 (63.7)/16 (36.3) | 0.259 |
| Odds Ratio (OR) | 95% Confidence Interval | p-Value | |
|---|---|---|---|
| Age (years) </≥65 | 5.19 | 1.85–18.62 | 0.001 |
| ECOG- performance status 0/≥1 | 2.08 | 0.92–4.74 | 0.078 |
| White blood cell count (/µL) </≥ 3600 (cutoff) | 0.49 | 0.22–1.04 | 0.063 |
| KL-6 level (U/mL) </≥500 | 1.05 | 0.36–2.86 | 0.916 |
| V5, % </≥43.1 (cutoff) | 3.90 | 1.81–8.75 | <0.001 |
| V20, % </≥22.4 (cutoff) | 2.78 | 1.31–6.03 | 0.008 |
| MLD, Gy </≥11.8 (cutoff) | 3.91 | 1.79–8.99 | <0.001 |
| ILAs +/− | 3.86 | 1.80–8.56 | <0.001 |
| Odds Ratio (OR) | 95% Confidence Interval | p-Value | |
|---|---|---|---|
| Age (years) </≥65 | 3.10 | 0.99–11.77 | 0.051 |
| V20 </≥22.4% | 2.56 | 1.14–5.88 | 0.021 |
| ILAs +/− | 2.95 | 1.29–6.93 | 0.01 |
| Model | Test Accuracy | Sensitivity | Specificity | AUC ROC | Precision | F1 Score | |
|---|---|---|---|---|---|---|---|
| Clinical factor-based model | 0.64 | 0.84 | 0.69 | 0.71 | 0.60 | 0.70 | |
| Support vector machine | Linear | 0.75 | 0.8 | 0.70 | 0.84 | 0.60 | 0.68 |
| Quadratic | 0.70 | 0.81 | 0.60 | 0.77 | 0.53 | 0.64 | |
| Cubic | 0.69 | 0.85 | 0.54 | 0.76 | 0.51 | 0.64 | |
| Fine Gaussian | 0.54 | 0.98 | 0.10 | 0.75 | 0.38 | 0.55 | |
| Medium Gaussian | 0.79 | 0.81 | 0.77 | 0.87 | 0.66 | 0.73 | |
| Coarse Gaussian | 0.81 | 0.78 | 0.84 | 0.88 | 0.73 | 0.75 | |
| k-Nearest Neighbor Method | Fine | 0.71 | 0.87 | 0.54 | 0.71 | 0.51 | 0.65 |
| Medium | 0.74 | 0.71 | 0.78 | 0.83 | 0.64 | 0.67 | |
| Coarse | 0.75 | 0.84 | 0.65 | 0.84 | 0.57 | 0.68 | |
| Cosine | 0.77 | 0.73 | 0.82 | 0.86 | 0.69 | 0.71 | |
| Cubic | 0.72 | 0.73 | 0.72 | 0.81 | 0.59 | 0.65 | |
| Weighted | 0.74 | 0.81 | 0.67 | 0.83 | 0.58 | 0.67 | |
| Subspace | 0.51 | 0.61 | 0.41 | 0.74 | 0.37 | 0.46 | |
| Neural Network | Narrow | 0.69 | 0.82 | 0.55 | 0.81 | 0.50 | 0.62 |
| Medium | 0.72 | 0.85 | 0.60 | 0.71 | 0.54 | 0.66 | |
| Bilayered | 0.68 | 0.81 | 0.55 | 0.77 | 0.50 | 0.62 | |
| Trilayered | 0.75 | 0.82 | 0.68 | 0.74 | 0.59 | 0.69 | |
| Naive Bayes | Gauss | 0.77 | 0.88 | 0.67 | 0.87 | 0.60 | 0.71 |
| Kernel | 0.77 | 0.86 | 0.68 | 0.85 | 0.60 | 0.71 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Masuda, T.; Kawahara, D.; Daido, W.; Imano, N.; Matsumoto, N.; Hamai, K.; Iwamoto, Y.; Takayama, Y.; Ueno, S.; Sumii, M.; et al. A Radiomics-Based Machine Learning Model for Predicting Pneumonitis During Durvalumab Treatment in Locally Advanced NSCLC. AI 2026, 7, 32. https://doi.org/10.3390/ai7010032
Masuda T, Kawahara D, Daido W, Imano N, Matsumoto N, Hamai K, Iwamoto Y, Takayama Y, Ueno S, Sumii M, et al. A Radiomics-Based Machine Learning Model for Predicting Pneumonitis During Durvalumab Treatment in Locally Advanced NSCLC. AI. 2026; 7(1):32. https://doi.org/10.3390/ai7010032
Chicago/Turabian StyleMasuda, Takeshi, Daisuke Kawahara, Wakako Daido, Nobuki Imano, Naoko Matsumoto, Kosuke Hamai, Yasuo Iwamoto, Yusuke Takayama, Sayaka Ueno, Masahiko Sumii, and et al. 2026. "A Radiomics-Based Machine Learning Model for Predicting Pneumonitis During Durvalumab Treatment in Locally Advanced NSCLC" AI 7, no. 1: 32. https://doi.org/10.3390/ai7010032
APA StyleMasuda, T., Kawahara, D., Daido, W., Imano, N., Matsumoto, N., Hamai, K., Iwamoto, Y., Takayama, Y., Ueno, S., Sumii, M., Shoda, H., Ishikawa, N., Yamasaki, M., Nishimura, Y., Kawase, S., Shiota, N., Awaya, Y., Kitaguchi, S., Murakami, Y., ... Hattori, N. (2026). A Radiomics-Based Machine Learning Model for Predicting Pneumonitis During Durvalumab Treatment in Locally Advanced NSCLC. AI, 7(1), 32. https://doi.org/10.3390/ai7010032

