Machine Learning-Based Predictive Maintenance for Photovoltaic Systems
Abstract
1. Introduction
1.1. Overview of Photovoltaic (PV) System
1.2. Problem Statement
1.3. Research Objective
2. Literature Review
2.1. Soiling and Its Impact on Photovoltaic Systems
2.2. Artificial Intelligence in Photovoltaic System Maintenance
3. Methodology
3.1. Data Collection and Preprocessing
3.1.1. Ground-Mount PV System and Sensor Setup of Shams Solar
PV Array Configuration
Environmental Monitoring Sensors
Irradiance and Temperature Tracking
Soiling Detection
3.2. Machine Learning Model Development
- -
- Logistic regression (LR);
- -
- K-nearest neighbors (KNN);
- -
- Decision trees (DT);
- -
- Support vector machines (SVM).
3.2.1. Modeling Based on Logistic Regression (LR)
3.2.2. Modeling Based on K-Nearest Neighbors (KNN)
3.2.3. Modeling Based on Decision Trees (DT)
3.2.4. Modeling Based on Support Vector Machines (SVM)
4. Results of Data Study
4.1. Data Visualization
- Humidity and Air Pressure
- 2.
- Electrical Parameters (DC Power, Current, Voltage)
- 3.
- Solar Irradiance (SMP11_BM, Trina_330W, Si_South_BH, etc.)
- 4.
- Temperature (PV Panels and Ambient)
- 5.
- Wind Conditions
4.2. Feature Impact Assessment Using Correlation Metrics
5. Results
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. A review on solar energy use in industries. Renew. Sustain. Energy Rev. 2012, 16, 4567–4575. [Google Scholar] [CrossRef]
- Al-Helal, A.; Ali, H.; Akbar, M. The effect of dust deposition on the performance of photovoltaic systems in arid environments. Energy Rep. 2017, 3, 65–72. [Google Scholar] [CrossRef]
- Mina, S.; Erfan, D.; Amal, B.; Mouhaydine, T.; Oumaima, M.; Fernando, J. The Impact of Dust Deposition on PV Panels’ Efficiency and Mitigation Solutions: Review Article. Energies 2023, 16, 8022. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Zhang, L. Effects of environmental factors on the performance of photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2016, 57, 869–875. [Google Scholar] [CrossRef]
- Sari, M.M.; Ismail, A.; Rahman, M. Impact of temperature on the performance of photovoltaic panels: A review. Renew. Sustain. Energy Rev. 2019, 50, 715–724. [Google Scholar] [CrossRef]
- Parida, B.; Sahoo, L.; Pradhan, S. Predictive maintenance of photovoltaic systems: A novel approach. Sol. Energy Mater. Sol. Cells 2015, 141, 87–95. [Google Scholar] [CrossRef]
- Hernandez, J.; Pardo, A.; Villanueva, S. Predictive maintenance of photovoltaic installations using machine learning. Energy Procedia 2016, 105, 347–352. [Google Scholar] [CrossRef]
- Burgess, P.; Goulden, M.; Hartmann, A. Predictive maintenance for photovoltaic systems: A review of current practices and future potential. Renew. Sustain. Energy Rev. 2018, 91, 539–549. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Sayyah, A.; Horenstein, M.N.; Mazumder, M.K. Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 2014, 107, 576–604. [Google Scholar] [CrossRef]
- Ilse, K.A.; Micheli, L.; Deceglie, M.G.; Muller, M.; Kurtz, S. Techno-economic assessment of soiling losses and mitigation strategies for solar power generation. Joule 2019, 3, 2303–2321. [Google Scholar] [CrossRef]
- Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Cordero, R.R.; Damiani, A.; Laroze, D.; Macdonell, S.; Jorquera, J.; Sepúlveda, E.; Feron, S.; Llanillo, P.; Labbe, F.; Carrasco, J.; et al. Effects of soiling on photovoltaic (PV) modules in the Atacama Desert. Sci. Rep. 2018, 8, 13992. [Google Scholar] [CrossRef] [PubMed]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Ren, G.; Wu, X.; Chen, X.; Zhang, Y. Predictive maintenance for PV systems using machine learning: A review. Energies 2021, 14, 1103. [Google Scholar] [CrossRef]
- Abhishek, K.; Singh, S.; Sharma, A. A hybrid model for solar panel cleaning scheduling using environmental monitoring and machine learning. Renew. Energy 2022, 193, 452–463. [Google Scholar] [CrossRef]
- Shobha, G.; Kumar, M.; Shah, A. Machine learning-based predictive analytics for solar panel soiling detection and cleaning optimization. Sol. Energy 2023, 261, 28–37. [Google Scholar] [CrossRef]
- Kannan, A.; Kumar, A.; Rajendran, R. Autonomous robotic cleaning systems for solar panels: A smart maintenance approach. Int. J. Renew. Energy Res. 2021, 11, 2031–2039. [Google Scholar]
- Sufyan, Y.; Samikannu, R.; Sidique, G.; Wetajega, S.; Victor, O.; Abdul-kadir, S.; Getachew, W. A Holistic Review of the Effects of Dust Buildup on Solar Photovoltaic Panel Efficiency. Solar Compass 2024, 13, 100101. [Google Scholar] [CrossRef]
- Ait Ouyahia, S.; Hachicha, M.; Fadlallah, S. Impact of dust on the performance of photovoltaic systems in arid climates. Renew. Energy 2023, 180, 1180–1192. [Google Scholar] [CrossRef]
- Elamim, A.; Sarikh, S.; Hartiti, B.; Benazzouz, A.; Elhamaoui, S.; Ghennioui, A. Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate. Energy Rep. 2024, 11, 2346–2359. [Google Scholar] [CrossRef]
- Alnaser, W.E.; Alnaser, N.W.; Abdel-Rahman, E. Environmental impacts of dust on the performance of photovoltaic panels in the Middle East. Energy Rep. 2022, 8, 409–415. [Google Scholar] [CrossRef]
- Hanna, V.; Mark, W. Effect of Dust Composition on the Reversibility of Photovoltaic Panel Soiling. Environ. Sci. Technol. 2021, 55, 1984–1991. [Google Scholar] [CrossRef]
- Samra, S.K.; Shukla, A.; Kumar, R. Evaluation of solar panel soiling losses and potential cleaning techniques in desert climates. Energy Rep. 2023, 9, 457–468. [Google Scholar] [CrossRef]
- Sharma, A.; Aggarwal, P.; Joshi, A. Performance analysis of soiled photovoltaic panels under varying environmental conditions. J. Sol. Energy Eng. 2021, 143, 011004. [Google Scholar] [CrossRef]
- Saleh, S.; Alnaser, N.; Mustafa, O. Seasonal variation in soiling losses on photovoltaic panels in desert climates. Energy 2022, 240, 122467. [Google Scholar] [CrossRef]
- Alashrah, M.; Abdullah, M.; Khaled, A. Robotic cleaning systems for photovoltaic panels: Challenges and opportunities. Sol. Energy 2022, 233, 205–215. [Google Scholar] [CrossRef]
- Kurd, A.M.; Petrov, V.; Rashid, M. Comparative analysis of cleaning techniques for solar panels in high-dust environments. Renew. Sustain. Energy Rev. 2022, 163, 112453. [Google Scholar] [CrossRef]
- Shah, H.; Islam, T.; Raza, S. Machine learning-based predictive analytics for optimal cleaning schedules in solar PV systems. Renew. Sustain. Energy Rev. 2023, 164, 112451. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Liu, Y. A review of artificial intelligence applications in predictive maintenance of renewable energy systems. Energy AI 2022, 8, 100148. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, P.; Yadav, R. AI-based predictive maintenance systems: Trends, applications, and future directions. Expert Syst. Appl. 2023, 214, 119167. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.A.; Sopian, K.; Kazem, H.A.; Chaichan, M.T. Review of AI applications in the prediction and maintenance of photovoltaic systems. Renew. Sustain. Energy Rev. 2022, 160, 112291. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, R.; Saha, H. Machine learning models for fault diagnosis in photovoltaic arrays: A comparative review. J. Clean. Prod. 2023, 403, 136715. [Google Scholar] [CrossRef]
- Ramadhan, R.; Hossain, M.J.; Niknam, T. Real-time predictive analytics for PV system efficiency using recurrent neural networks. Appl. Energy 2022, 308, 118362. [Google Scholar] [CrossRef]
- Khan, S.; Ahmed, R.; Saleem, M. Hybrid predictive maintenance framework for PV systems using weather and performance data. Renew. Energy 2022, 191, 570–581. [Google Scholar] [CrossRef]
- Aziz, M.A.; Hossain, M.M.; Reza, M.I. Artificial neural networks for predictive maintenance and cleaning schedule optimization of PV systems. Energy Rep. 2023, 9, 823–832. [Google Scholar] [CrossRef]
- Zonta, T.; Da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; Da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Tang, J. Explainable AI for predictive maintenance in photovoltaic power plants. Renew. Energy 2023, 213, 1207–1219. [Google Scholar] [CrossRef]
- Al-Humairi, A.; Khalis, E.; Al Hemyari, Z.A.; Jung, P. The Impact of Data Augmentation on AI-Driven Predictive Algorithms for Enhanced Solar Panel Cleaning Efficiency. Processes 2025, 13, 1195. [Google Scholar] [CrossRef]
- Al-Humairi, A.; El Asri, H.; Al Hemyari, Z.A.; Jung, P. Assessing the Features of PV System’s Data and the Soiling Effects on PV System’s Performance Based on the Field Data. Energies 2025, 17, 4419. [Google Scholar] [CrossRef]
Region Climate | Soiling Factor | Performance Impact | Observations | Reference(s) |
---|---|---|---|---|
North Africa Arid | Dust accumulation, wind speed, humidity | Up to 25% energy loss | Soiling rates are highly seasonal and region-dependent | [19,22] |
Middle East Arid to Semi-Arid | Particle density, dust storms | Up to 30% energy yield reduction | Cleaning frequency significantly affects system ROI | [21,23] |
Egypt Desert | Seasonal dust variation, precipitation | 10–20% monthly variation in soiling loss | Rainfall events temporarily restore performance | [24,26] |
India Semi-Arid | Relative humidity, dust type, temperature | Performance degradation up to 22% | Electrostatic dust adhesion increases with heat and RH | [22,25] |
Gulf Region Hyper-Arid Desert | Dust density, wind direction, cleaning intervals | Higher losses in dry season | Robotic cleaning found more effective than manual methods | [27,28] |
Bahrain Dry Desert | PM10 concentration, irradiance, wind | Soiling causes 15–20% drop in efficiency | Soiling severity correlates with PM levels and wind | [22,23] |
China Urban/Rural | Dust mineral composition, surface temperature | Up to 18% degradation | Darker particles cause greater absorption and heating | [25] |
Egypt Predominantly Arid Desert | Ambient temperature, air pressure, wind | Noticeable efficiency drop within 2 weeks | Frequent light cleaning suggested in high-dust periods | [26,27] |
AI/ML Algorithm | Input Features | Objective | Results Impact | Reference(s) |
---|---|---|---|---|
Random Forest, SVM | Temperature, irradiance, humidity, soiling index | Predict power loss due to soiling | High accuracy, robust to noise | [32,33] |
Hybrid ML (SVM + KNN) | Weather data + performance data | Optimize cleaning decisions | Improved decision thresholds | [35] |
Neural Networks | Time-series PV output, dust data, temperature | Forecast power degradation | High predictive accuracy | [36] |
Deep Learning (CNN + LSTM) | Sensory data, images, historical performance | Fault detection and maintenance planning | Handles spatial-temporal data | [34] |
Recurrent Neural Networks | Real-time environmental + operational data | Predict energy output and cleaning needs | Suitable for real-time forecasting | [36,37] |
Ensemble Learning Models | Multivariate environmental and performance datasets | General predictive maintenance | Adaptable across systems | [37] |
ML Model Comparison | PV current/voltage, irradiance, weather | Fault classification | Evaluates model effectiveness across fault types | [38] |
Explainable AI | Environmental and maintenance logs | Model interpretability in maintenance | Improves trust and operational integration | [38] |
Model | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
Logistic Regression (LR) | 89.4 | 87.5 | 91.2 | 89.3 |
K-Nearest Neighbors (KNN) | 83.2 | 81.9 | 84.5 | 83.2 |
Decision Tree (DT) | 85.7 | 83.2 | 87.4 | 85.3 |
Support Vector Machine (SVM) | 92.1 | 90.4 | 93.1 | 91.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Humairi, A.; Khalis, E.; Al-Hemyari, Z.A.; Jung, P. Machine Learning-Based Predictive Maintenance for Photovoltaic Systems. AI 2025, 6, 133. https://doi.org/10.3390/ai6070133
Al-Humairi A, Khalis E, Al-Hemyari ZA, Jung P. Machine Learning-Based Predictive Maintenance for Photovoltaic Systems. AI. 2025; 6(7):133. https://doi.org/10.3390/ai6070133
Chicago/Turabian StyleAl-Humairi, Ali, Enmar Khalis, Zuhair A. Al-Hemyari, and Peter Jung. 2025. "Machine Learning-Based Predictive Maintenance for Photovoltaic Systems" AI 6, no. 7: 133. https://doi.org/10.3390/ai6070133
APA StyleAl-Humairi, A., Khalis, E., Al-Hemyari, Z. A., & Jung, P. (2025). Machine Learning-Based Predictive Maintenance for Photovoltaic Systems. AI, 6(7), 133. https://doi.org/10.3390/ai6070133