AI-Driven Analysis for Real-Time Detection of Unstained Microscopic Cell Culture Images
Abstract
1. Introduction
2. Material and Methods
2.1. Cell Culture and In Vitro Treatment
2.2. Hemoglobin (HBA) ELISA
2.3. Automated Cell Culture and Image Generation
2.4. Image Processing
2.5. Model Training and Validation
3. Results
3.1. Single-Class Cell Line Detection
3.2. Detection of Longitudinal Morphological Changes
3.3. Multiclass Leukemia Cell Line Discrimination
3.4. Applying the Cell Line Recognition Model to a Cellular Differentiation Model
3.5. Applicability of the Cell Differentiation Model to a Drug Testing Setup
3.6. Morphological Insights
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DL | deep learning |
CNN | convolutional neural network |
DAC | decitabine |
RT-DETR | real-time detection transformer |
AML | acute myeloid leukemia |
AI | artificial intelligence |
mAP | mean average precision |
OMP | orthogonal matching pursuit |
PCA | principal component analysis |
References
- van Rijt, A.; Stefanek, E.; Valente, K. Preclinical Testing Techniques: Paving the Way for New Oncology Screening Approaches. Cancers 2023, 15, 4466. [Google Scholar] [CrossRef]
- Horak, P.; Heining, C.; Kreutzfeldt, S.; Hutter, B.; Mock, A.; Hullein, J.; Frohlich, M.; Uhrig, S.; Jahn, A.; Rump, A.; et al. Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers. Cancer Discov. 2021, 11, 2780–2795. [Google Scholar] [CrossRef]
- Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 2017, 23, 1028–1035. [Google Scholar] [CrossRef]
- Prasad, V. Perspective: The precision-oncology illusion. Nature 2016, 537, S63. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernandez-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.P.; El Khaled El Faraj, R.; Urrutia Gomez, J.E.; Sonnentag, S.J.; Wang, F.; Nestler, B.; Orian-Rousseau, V.; Popova, A.A.; Levkin, P.A.; Reischl, M. Automated high-throughput image processing as part of the screening platform for personalized oncology. Sci. Rep. 2023, 13, 5107. [Google Scholar] [CrossRef] [PubMed]
- Tebon, P.J.; Wang, B.; Markowitz, A.L.; Davarifar, A.; Tsai, B.L.; Krawczuk, P.; Gonzalez, A.E.; Sartini, S.; Murray, G.F.; Nguyen, H.T.L.; et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat. Commun. 2023, 14, 3168. [Google Scholar] [CrossRef] [PubMed]
- Serafini, C.E.; Charles, S.; Casteleiro Costa, P.; Niu, W.; Cheng, B.; Wen, Z.; Lu, H.; Robles, F.E. Non-invasive label-free imaging analysis pipeline for in situ characterization of 3D brain organoids. Sci. Rep. 2024, 14, 22331. [Google Scholar] [CrossRef]
- Issa, J.; Abou Chaar, M.; Kempisty, B.; Gasiorowski, L.; Olszewski, R.; Mozdziak, P.; Dyszkiewicz-Konwińska, M. Artificial-intelligence-based imaging analysis of stem cells: A systematic scoping review. Biology 2022, 11, 1412. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, R.; Wu, Z.; Song, S.; Cheng, L.; Zhu, R. Deep learning-based predictive identification of neural stem cell differentiation. Nat. Commun. 2021, 12, 2614. [Google Scholar] [CrossRef]
- Das, P.K.; Diya, V.; Meher, S.; Panda, R.; Abraham, A. A systematic review on recent advancements in deep and machine learning based detection and classification of acute lymphoblastic leukemia. IEEE Access 2022, 10, 81741–81763. [Google Scholar] [CrossRef]
- Sadafi, A.; Bordukova, M.; Makhro, A.; Navab, N.; Bogdanova, A.; Marr, C. RedTell: An AI tool for interpretable analysis of red blood cell morphology. Front. Physiol. 2023, 14, 1058720. [Google Scholar] [CrossRef] [PubMed]
- Stomper, J.; Ihorst, G.; Suciu, S.; Sander, P.N.; Becker, H.; Wijermans, P.W.; Plass, C.; Weichenhan, D.; Bissé, E.; Claus, R. Fetal hemoglobin induction during decitabine treatment of elderly patients with high-risk myelodysplastic syndrome or acute myeloid leukemia: A potential dynamic biomarker of outcome. Haematologica 2019, 104, 59. [Google Scholar] [CrossRef]
- Dwyer, B.; Nelson, J.; Hansen, T. Roboflow (Version 1.0) [Software]. Computer Vision. 2025. Available online: https://roboflow.com (accessed on 10 April 2024).
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8 (Version 8.0.0) [Software]. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 10 April 2024).
- Papers with Code—Real-Time Object Detection on COCO Benchmark. Available online: https://paperswithcode.com/sota/real-time-object-detection-on-coco (accessed on 10 April 2024).
- Muhammad, M.B.; Yeasin, M. Eigen-CAM: Class Activation Map using Principal Components. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Virtual, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Long, X.; Cleveland, W.L.; Yao, Y.L. Automatic detection of unstained viable cells in bright field images using a support vector machine with an improved training procedure. Comput. Biol. Med. 2006, 36, 339–362. [Google Scholar] [CrossRef]
- Thite, N.G.; Tuberty-Vaughan, E.; Wilcox, P.; Wallace, N.; Calderon, C.P.; Randolph, T.W. Stain-Free Approach to Determine and Monitor Cell Heath Using Supervised and Unsupervised Image-Based Deep Learning. J. Pharm. Sci. 2024, 113, 2114–2127. [Google Scholar] [CrossRef]
- Pan, F.; Wu, Y.; Cui, K.; Chen, S.; Li, Y.; Liu, Y.; Shakoor, A.; Zhao, H.; Lu, B.; Zhi, S.; et al. Accurate detection and instance segmentation of unstained living adherent cells in differential interference contrast images. Comput. Biol. Med. 2024, 182, 109151. [Google Scholar] [CrossRef]
- Dombret, H.; Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 2016, 127, 53–61. [Google Scholar] [CrossRef]
- Aldughayfiq, B.; Ashfaq, F.; Jhanjhi, N.Z.; Humayun, M. YOLOv5-FPN: A Robust Framework for Multi-Sized Cell Counting in Fluorescence Images. Diagnostics 2023, 13, 2280. [Google Scholar] [CrossRef]
- Cui, C.; Chen, X.; He, L.; Li, F. CA-YOLO: An Efficient YOLO-Based Algorithm with Context-Awareness and Attention Mechanism for Clue Cell Detection in Fluorescence Microscopy Images. Sensors 2025, 25, 6001. [Google Scholar] [CrossRef]
- Kang, M.; Ting, C.-M.; Fung Ting, F.; Phan, R. CST-YOLO: A Novel Method for Blood Cell Detection Based on Improved YOLOv7 and CNN-Swin Transformer. arXiv 2023, arXiv:2306.14590. [Google Scholar] [CrossRef]
- Voloshin, N.; Putlyaev, E.; Chechekhina, E.; Usachev, V.; Karagyaur, M.; Bozov, K.; Grigorieva, O.; Tyurin-Kuzmin, P.; Kulebyakin, K. NuclePhaser: A YOLO-based framework for cell nuclei detection and counting in phase contrast images of arbitrary size with support of fast calibration and testing on specific use cases. bioRxiv 2025. [Google Scholar] [CrossRef]
- Du, S.; Pan, W.; Li, N.; Dai, S.; Xu, B.; Liu, H.; Xu, C.; Li, X. TSD-YOLO: Small traffic sign detection based on improved YOLO v8. IET Image Process. 2024, 18, 2884–2898. [Google Scholar] [CrossRef]
- Tian, Y.; Ye, Q.; Doermann, D. YOLOv12: Attention-Centric Real-Time Object Detectors. arXiv 2025, arXiv:2502.12524. [Google Scholar] [CrossRef]
- Archit, A.; Freckmann, L.; Nair, S.; Khalid, N.; Hilt, P.; Rajashekar, V.; Freitag, M.; Teuber, C.; Spitzner, M.; Tapia Contreras, C.; et al. Segment Anything for Microscopy. Nat. Methods 2025, 22, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar] [CrossRef]
- Stover, A.E.; Herculian, S.; Banuelos, M.G.; Navarro, S.L.; Jenkins, M.P.; Schwartz, P.H. Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research. J. Vis. Exp. 2016, 112, e53685. [Google Scholar] [CrossRef]
- Griffiths, J.B. The effect of medium changes on the growth and metabolism of the human diploid cell, W1-38. J. Cell. Sci. 1971, 8, 43–52. [Google Scholar] [CrossRef]
- Golikov, M.V.; Valuev-Elliston, V.T.; Smirnova, O.A.; Ivanov, A.V. Physiological Media in Studies of Cell Metabolism. Mol. Biol. 2022, 56, 629–637. [Google Scholar] [CrossRef]
Dataset | Description | # Images Avg. Ann./Image | # Classes |
---|---|---|---|
Single Class Cell Detection | Object detection based on K562 cells | 436 15.5 | K562: 6764 |
Multiclass Cell Detection | Testing for discrimination between myeloid cell lines (K562, HL-60 and Kasumi-1) | 399 23.8 | K562: 2682 HL-60: 3319 Kasumi-1: 3498 |
Cell culture time | Comparing fresh and 6 days-old K562 | 156 25.1 | K562: 1924 K562d6: 1989 |
Differentiation Model | Using known substances (Hemin and PMA) to differentiate K562 cells | 216 14.1 | Hemin: 1112 K562: 1298 PMA: 631 |
Decitabine (DAC) | Applying 20 nM and 100 nM Decitabine on K562 cells | 62 57.1 | DAC 20 nM: 2005 DAC 100 nM: 1537 |
Decitabine + Differentiation Model | Decitabine-treated K562 added to the Differentiation Model independent of concentration | 236 17.9 | DAC: 1194 Hemin: 1112 K562: 1298 PMA: 631 |
Abbr. | Dataset | Description | Number of Images |
---|---|---|---|
LM | LABMaiTE K562 dataset | Other passage of K562 cells on a similar AICE system in Freiburg | 275 images |
Mixture | Mixture dataset | Mixing cells with different substance treatment in a 50:50 ratio | 128 images |
GC | Growth curve dataset | Two runs of K562 over nearly eight days in AICE system. Images were taken every two hours | 716 images |
Dataset | P | Sens | Spec | mAP@0.5 | mAP@0.5:0.95 |
---|---|---|---|---|---|
Cell Detection | 97.4% | 98.1% | - | 98.9% | 76.9% |
Leukemia cell lines HL-60 K562 Kasumi-1 | 94.6% 92.3% 95.5% 96.0% | 97.7% 99.2% 96.2% 97.6% | 97.3% 97.0% 98.2% 98.1% | 98.3% | 74.3% |
Aging K562 K562d6 | 95.6% 94.0% 97.2% | 99.2% 100% 98.3% | 95.8% 94.6% 96.9% | 98.8% | 74.9% |
Differentiation Model Hemin K562 PMA | 94.6% 96.9% 93.3% 93.5% | 96.2% 98.4% 95.2% 95.1% | 97.1% 98.0% 94.8% 98.5% | 97.8% | 77.7% |
Decitabine DAC20 DAC100 | 71.5% 77.9% 66.1% | 78.4% 80.5% 76.2% | 71.8% 69.4% 74.2% | 82.6% | 64.5% |
Decitabine added to differentiation model DAC Hemin K562 PMA | 92.9% 94.3% 91.7% 89.2% 96.5% | 94.5% 95.1% 96.8% 95.9% 90.2% | 97.1% 97.8% 96.6% 94.5% 99.5% | 97.3% | 77.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hildebrand, K.; Mögele, T.; Raith, D.; Kling, M.; Rubeck, A.; Schiele, S.; Meerdink, E.; Sapre, A.; Bermeitinger, J.; Trepel, M.; et al. AI-Driven Analysis for Real-Time Detection of Unstained Microscopic Cell Culture Images. AI 2025, 6, 271. https://doi.org/10.3390/ai6100271
Hildebrand K, Mögele T, Raith D, Kling M, Rubeck A, Schiele S, Meerdink E, Sapre A, Bermeitinger J, Trepel M, et al. AI-Driven Analysis for Real-Time Detection of Unstained Microscopic Cell Culture Images. AI. 2025; 6(10):271. https://doi.org/10.3390/ai6100271
Chicago/Turabian StyleHildebrand, Kathrin, Tatiana Mögele, Dennis Raith, Maria Kling, Anna Rubeck, Stefan Schiele, Eelco Meerdink, Avani Sapre, Jonas Bermeitinger, Martin Trepel, and et al. 2025. "AI-Driven Analysis for Real-Time Detection of Unstained Microscopic Cell Culture Images" AI 6, no. 10: 271. https://doi.org/10.3390/ai6100271
APA StyleHildebrand, K., Mögele, T., Raith, D., Kling, M., Rubeck, A., Schiele, S., Meerdink, E., Sapre, A., Bermeitinger, J., Trepel, M., & Claus, R. (2025). AI-Driven Analysis for Real-Time Detection of Unstained Microscopic Cell Culture Images. AI, 6(10), 271. https://doi.org/10.3390/ai6100271