Quantifying Visual Differences in Drought-Stressed Maize through Reflectance and Data-Driven Analysis
Abstract
:1. Introduction
2. Dataset
2.1. Data Collection Platform
2.2. Water-Stress Protocol and Image Dataset
3. Methodology
3.1. Image Pre-Processing
3.2. Detection and Segmentation
3.3. Drought-Stress Analysis
4. Results
4.1. Implementation Details
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheoran, S.; Kaur, Y.; Kumar, S.; Shukla, S.; Rakshit, S.; Kumar, R. Recent advances for drought stress tolerance in maize (Zea mays L.): Present status and future prospects. Front. Plant Sci. 2022, 13, 872566. [Google Scholar] [CrossRef]
- Goyal, P.; Sharda, R.; Saini, M.; Siag, M. A deep learning approach for early detection of drought stress in maize using proximal scale digital images. Neural Comput. Appl. 2024, 36, 1899–1913. [Google Scholar] [CrossRef]
- Gao, Y.; Qiu, J.; Miao, Y.; Qiu, R.; Li, H.; Zhang, M. Prediction of leaf water content in maize seedlings based on hyperspectral information. IFAC-PapersOnLine 2019, 52, 263–269. [Google Scholar] [CrossRef]
- An, J.; Li, W.; Li, M.; Cui, S.; Yue, H. Identification and classification of maize drought stress using deep convolutional neural network. Symmetry 2019, 11, 256. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, P.; Jiang, B.; Li, M.; Gong, Z. Early detection of water stress in maize based on digital images. Comput. Electron. Agric. 2017, 140, 461–468. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, P.; Zhuang, S.; Li, M.; Li, Z.; Gong, Z. Detection of maize drought based on texture and morphological features. Comput. Electron. Agric. 2018, 151, 50–60. [Google Scholar] [CrossRef]
- Asaari, M.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; Scheunders, P. Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Comput. Electron. Agric. 2019, 162, 749–758. [Google Scholar] [CrossRef]
- Souza, A.; Yang, Y. High-throughput corn image segmentation and trait extraction using chlorophyll fluorescence images. Plant Phenomics 2021, 2021, 9792582. [Google Scholar] [CrossRef]
- Romano, G.; Zia, S.; Spreer, W.; Sanchez, C.; Cairns, J.; Araus, J.; Müller, J. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Comput. Electron. Agric. 2011, 79, 67–74. [Google Scholar] [CrossRef]
- Gausman, H.; Allen, W. Optical parameters of leaves of 30 plant species. Plant Physiol. 1973, 52, 57–62. [Google Scholar] [CrossRef]
- Humplík, J.; Lazár, D.; Husičková, A.; Spíchal, L. Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—A review. Plant Methods 2015, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, T.; Acevedo, E.; Henderson, D. Maize leaf elongation: Continuous measurements and close dependence on plant water status. Science 1970, 168, 590–591. [Google Scholar] [CrossRef]
- Acevedo, E.; Hsiao, T.; Henderson, D. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 1971, 48, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Tardieu, F.; Reymond, M.; Hamard, P.; Granier, C.; Muller, B. Spatial distributions of expansion rate, cell division rate and cell size in maize leaves: A synthesis of the effects of soil water status, evaporative demand and temperature. J. Exp. Bot. 2000, 51, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Starliper, N.; Bhosale, D.; Taggart, M.; Ranganath, R.; Sarje, T.; Daniele, M.; Bozkurt, A.; Rufty, T.; Lobaton, E. Feasibility study of water stress detection in plants using a high-throughput low-cost system. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar]
- Valle, B.; Simonneau, T.; Boulord, R.; Sourd, F.; Frisson, T.; Ryckewaert, M.; Hamard, P.; Brichet, N.; Dauzat, M.; Christophe, A. PYM: A new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments. Plant Methods 2017, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.; Chang, S.; Putra, G.; Kim, H.; Kim, D. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. PLoS ONE 2018, 13, e0196615. [Google Scholar] [CrossRef] [PubMed]
- Brichet, N.; Fournier, C.; Turc, O.; Strauss, O.; Artzet, S.; Pradal, C.; Welcker, C.; Tardieu, F.; Cabrera-Bosquet, L. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform. Plant Methods 2017, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gehan, M.; Fahlgren, N.; Abbasi, A.; Berry, J.; Callen, S.; Chavez, L.; Doust, A.; Feldman, M.; Gilbert, K.; Hodge, J.; et al. PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ 2017, 5, e4088. [Google Scholar] [CrossRef]
- Rubner, Y.; Tomasi, C.; Guibas, L. A metric for distributions with applications to image databases. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 7 January 1998; pp. 59–66. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Raspberry pi Hardware Documnetation. Available online: https://www.raspberrypi.com/documentation/computers/raspberry-pi.html (accessed on 30 May 2024).
- Node-RED [Online]. Available online: https://nodered.org/ (accessed on 30 May 2024).
- Labelbox, “Labelbox”, Online, 2024. Available online: https://labelbox.com (accessed on 30 May 2024).
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/detectron2 (accessed on 30 May 2024).
- Le, V.; Truong, G.; Alameh, K. Detecting weeds from crops under complex field environments based on Faster RCNN. In Proceedings of the 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), Phu Quoc, Vietnam, 13–15 January 2021; pp. 350–355. [Google Scholar]
- Gao, F.; Fu, L.; Zhang, X.; Majeed, Y.; Li, R.; Karkee, M.; Zhang, Q. Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN. Comput. Electron. Agric. 2020, 176, 105634. [Google Scholar] [CrossRef]
- Wan, S.; Goudos, S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput. Netw. 2020, 168, 107036. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Yang, Y.; Guo, R.; Yang, J.; Yue, J.; Wang, Y. A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster RCNN. Comput. Electron. Agric. 2021, 182, 106054. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, N.; Ding, L.; Li, X.; Goh, H.; Han, C.; Zhang, M. Identification and counting of sugarcane seedlings in the field using improved faster R-CNN. Remote. Sens. 2022, 14, 5846. [Google Scholar] [CrossRef]
- Liu, Y.; Cen, C.; Che, Y.; Ke, R.; Ma, Y.; Ma, Y. Detection of maize tassels from UAV RGB imagery with faster R-CNN. Remote Sens. 2020, 12, 338. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. In Dr. Dobb’s Journal of Software Tools; Miller Freeman Inc.: San Francisco, CA, USA, 2000. [Google Scholar]
- Kolesnikov, A.; Beyer, L.; Zhai, X.; Puigcerver, J.; Yung, J.; Gelly, S.; Houlsby, N. Big transfer (bit): General visual representation learning. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part V 16. 2020; pp. 491–507. [Google Scholar]
- Xie, Q.; Luong, M.; Hovy, E.; Le, Q. Self-training with noisy student improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10687–10698. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0 Contributors SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, J.; Swann, A.; Kim, S. Maize yield under a changing climate: The hidden role of vapor pressure deficit. Agric. For. Meteorol. 2019, 279, 107692. [Google Scholar] [CrossRef]
- Devi, M.; Reddy, V.; Timlin, D. Drought-induced responses in maize under different vapor pressure deficit conditions. Plants 2022, 11, 2771. [Google Scholar] [CrossRef]
- Inoue, T.; Sunaga, M.; Ito, M.; Yuchen, Q.; Matsushima, Y.; Sakoda, K.; Yamori, W. Minimizing VPD fluctuations maintains higher stomatal conductance and photosynthesis, resulting in improvement of plant growth in lettuce. Front. Plant Sci. 2021, 12, 646144. [Google Scholar] [CrossRef]
Trial | Growth Stage | No. of Days | V Steps | H Steps | No. of Images | Drydown Start |
---|---|---|---|---|---|---|
1 | V4 | 11 | 40 | 27 | 13,987 | Day 1 |
2 | V4 | 9 | 40 | 28 | 15,730 | Day 4 |
3 | V3 | 9 | 29 | 29 | 13,422 | Day 4 |
Trial 1 | Trial 2 | Trial 3 | ||||
---|---|---|---|---|---|---|
No MAL | MAL | No MAL | MAL | No MAL | MAL | |
No. of images | 200 | 394 | 100 | 236 | 100 | 248 |
Annotation Time | 2 h 5 min | 48 min | 1 h 12 min | 29 min | 58 min | 32 min |
No MAL | Total | No MAL | Total | No MAL | Total | |
Detectron2 Perf (AP) | 75.33 | 79.41 | 78.10 | 84.92 | 77.93 | 82.20 |
Detectron2 Perf (AP 75) | 90.57 | 94 | 93.71 | 96.37 | 93.04 | 96.05 |
Experiment | No. of Train Images | No. of Test Images | Mean1 | STD1 | Mean2 | STD2 |
---|---|---|---|---|---|---|
A | 1, 2, 3 (1278) | 1 (8635) | 0.9779 | 0.0061 | 0.9866 | 0.0082 |
B | 1, 2, 3 (1278) | 2 (5160) | 0.9841 | 0.0054 | 0.9987 | 0.0021 |
C | 1, 2, 3 (1278) | 3 (4818) | 0.9599 | 0.0062 | 0.9975 | 0.005 |
D | 2, 3 (684) | 1 (8635) | 0.5633 | 0.0231 | 0.6678 | 0.028 |
E | 3 (348) | 2 (5160) | 0.6815 | 0.0197 | 0.8211 | 0.022 |
F | 2 (336) | 3 (4818) | 0.6663 | 0.0243 | 0.7537 | 0.0255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Reynolds, J.; Taggart, M.; Daniele, M.; Bozkurt, A.; Lobaton, E. Quantifying Visual Differences in Drought-Stressed Maize through Reflectance and Data-Driven Analysis. AI 2024, 5, 790-802. https://doi.org/10.3390/ai5020040
Banerjee S, Reynolds J, Taggart M, Daniele M, Bozkurt A, Lobaton E. Quantifying Visual Differences in Drought-Stressed Maize through Reflectance and Data-Driven Analysis. AI. 2024; 5(2):790-802. https://doi.org/10.3390/ai5020040
Chicago/Turabian StyleBanerjee, Sanjana, James Reynolds, Matthew Taggart, Michael Daniele, Alper Bozkurt, and Edgar Lobaton. 2024. "Quantifying Visual Differences in Drought-Stressed Maize through Reflectance and Data-Driven Analysis" AI 5, no. 2: 790-802. https://doi.org/10.3390/ai5020040
APA StyleBanerjee, S., Reynolds, J., Taggart, M., Daniele, M., Bozkurt, A., & Lobaton, E. (2024). Quantifying Visual Differences in Drought-Stressed Maize through Reflectance and Data-Driven Analysis. AI, 5(2), 790-802. https://doi.org/10.3390/ai5020040