Exergames in the Rehabilitation of Burn Patients: A Systematic Review of Randomized Controlled Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection
2.5. Synthesis of Results
2.6. Quality Assessment
3. Results
3.1. Studies Characteristics
3.2. Participants Characteristics
3.3. Intervention Characteristics
3.4. Outcomes
4. Discussion
5. Implications for Practice and Research
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 6MWT | 6-Minute Walk Test |
| APS | Analog Pain Scale |
| AROM | Active Range of Motion |
| ASK©p | Activities Scale for Kids©p |
| F | Female |
| HiMAT | High-Level Mobility Assessment Tool |
| JHFT | Jebsen Hand Function Test |
| LLFI | Lower Limb Functional Index |
| M | Male |
| PASS | Pain Anxiety Symptoms Scale |
| QuickDASH | Quick Disabilities of the Arm, Shoulder and Hand |
| ROM | Range of Motion |
| SI | Stability Index (Biodex Balance System) |
| TAMPA | Tampa Scale for Kinesiophobia |
| TBSA | Total Body Surface Area |
| TUG | Timed Up and Go Test |
| VAS | Visual Analogue Scale |
References
- Ettenberger, M.; Maya, R.; Salgado-Vasco, A.; Cordoba-Silva, J.G.; Amarillo, M.; Betancourt-Zapata, W.; Marín-Sánchez, J.; Gómez-Ortega, V.; Valderrama, M. The effect of music therapy on background pain, anxiety, depression, vital signs, and medication usage in adult burn patients in the Intensive Care Unit: A randomized controlled trial. Burns 2025, 51, 107587. [Google Scholar] [CrossRef]
- Ba, Y.; Li, F.; Wu, Y.; Ba, T.; Wang, L.; Cao, S.; Li, Q. A clinical study on the evaluation of rehabilitation outcomes in patients with deep hand burns using hand strength monitoring. Burns 2025, 51, 107415. [Google Scholar] [CrossRef]
- Kondo, T.; Tsuboi, H.; Nishiyama, K.; Takahashi, G.; Nishimura, Y. Effects of rehabilitation treatments jointly considered by physiatrists and rehabilitation therapists in patients with severe burn injury. Burns 2024, 50, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Varzeshi, M.; Deldar, K.; Tavousi, S.H.; Froutan, R.; Nezami, H. The effect of active video games on pain intensity, joint range of motion, and motor function in children with burns: A randomized clinical trial. BMC Pediatr. 2025, 25, 618. [Google Scholar] [CrossRef] [PubMed]
- Seyyah, M.; Toppuz, S. The Effect of Physiotherapy and Rehabilitation on Pain, Kinesiophobia and Functionality in Upper Extremity. Burns Hand Microsurg. 2021, 10, 233–240. [Google Scholar] [CrossRef]
- Viana, R.B.; de Oliveira, V.N.; Dankel, S.J.; Loenneke, J.P.; Abe, T.; da Silva, W.F.; Morais, N.S.; Vancini, R.L.; Andrade, M.S.; de Lira, C.A.B. The effects of exergames on muscle strength: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 1592–1611. [Google Scholar] [CrossRef]
- Voon, K.; Silberstein, I.; Eranki, A.; Phillips, M.; Wood, F.M.; Edgar, D.W. Xbox KinectTM based rehabilitation as a feasible adjunct for minor upper limb burns rehabilitation: A pilot RCT. Burns 2016, 42, 1797–1804. [Google Scholar] [CrossRef]
- Ayed, I.; Ghazel, A.; Jaume-i-Capó, A.; Moyà-Alcover, G.; Varona, J.; Martínez-Bueso, P. Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology. Int. J. Med. Inform. 2019, 131, 103909. [Google Scholar] [CrossRef]
- Ravenek, K.E.; Wolfe, D.L.; Hitzig, S.L. A scoping review of video gaming in rehabilitation. Disabil. Rehabil. Assist. Technol. 2016, 11, 445–453. [Google Scholar] [CrossRef]
- Cuthbert, R.; Turkay, S.; Brown, R.; Johnson, D.; Altizer, R.; Desselle, M. Tradies, Technology and Therapy: Towards Designing Gameful VR Environments for Burn Rehabilitation. In Proceedings of the CHI Play 2020 The Annual Symposium on Computer-Human Interaction in Play, Virtual, Canada, 2–4 November 2020; pp. 549–560. [Google Scholar]
- Parry, I.S.; Bagley, A.; Kawada, J.; Sen, S.; Greenhalgh, D.G.; Palmieri, T.L. Commercially available interactive video games in burn rehabilitation: Therapeutic potential. Burns 2012, 38, 493–500. [Google Scholar] [CrossRef]
- Berton, A.; Longo, U.G.; Candela, V.; Fioravanti, S.; Giannone, L.; Arcangeli, V.; Alciati, V.; Berton, C.; Facchinetti, G.; Marchetti, A.; et al. Virtual reality, augmented reality, gamification, and telerehabilitation: Psychological impact on orthopedic patients’ rehabilitation. J. Clin. Med. 2020, 9, 2567. [Google Scholar] [CrossRef]
- Fernandes, C.S.; Baldaia, C.; Ferreira, L.M. Impact of Exergames in Women with Breast Cancer After Surgery: A Systematic Review. SN Compr. Clin. Med. 2022, 5, 5. [Google Scholar] [CrossRef]
- Basha, M.A.; Abdel-Aal, N.M.; Kamel, F.A.H. Effects of Wii Fit Rehabilitation on Lower Extremity Functional Status in Adults With Severe Burns: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2022, 103, 289–296. [Google Scholar] [CrossRef]
- Khamees, K.M.; Deldar, K.; Yazarlu, O.; Tuama, A.M.; Ganji, R.; Mazlom, S.R.; Froutan, R. Effect of augmented reality–based rehabilitation of hand burns on hand function in children: A randomized controlled trial. J. Hand Ther. 2024, 38, 235–245. [Google Scholar] [CrossRef]
- Parker, M.; Delahunty, B.; Heberlein, N.; Devenish, N.; Wood, F.M.; Jackson, T.; Carter, T.; Edgar, D.W. Interactive gaming consoles reduced pain during acute minor burn rehabilitation: A randomized, pilot trial. Burns 2016, 42, 91–96. [Google Scholar] [CrossRef]
- Aromataris, E.; Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. JBI Manual for Evidence Synthesis; JBI: Adelaide, Australia, 2024; Available online: https://synthesismanual.jbi.global (accessed on 9 May 2025).
- Barker, T.H.; Stone, J.C.; Sears, K.; Klugar, M.; Tufanaru, C.; Leonardi-Bee, J.; Aromataris, E.; Munn, Z. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid. Synth. 2023, 21, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Yohannan, S.K.; Tufaro, P.A.; Hunter, H.; Orleman, L.; Palmatier, S.; Sang, C.; Gorga, D.I.; Yurt, R.W. The utilization of Nintendo® WiiTM during burn rehabilitation: A pilot study. J. Burn Care Res. 2011, 33, 36–45. [Google Scholar] [CrossRef]
- Parry, I.; Painting, L.; Bagley, A.; Kawada, J.; Molitor, F.; Sen, S.; Greenhalgh, D.G.; Palmieri, T.L. A pilot prospective randomized control trial comparing exercises using videogame therapy to standard physical therapy: 6 Months follow-up. J. Burn Care Res. 2015, 36, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Lozano, E.I.; Potterton, J.L. The use of Xbox KinectTM in a Paediatric Burns Unit. S. Afr. J. Physiother. 2018, 74, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Radwan, N.L.; Ibrahim, M.M.; Mahmoud, W.S. Effect of Wii-habilitation on spatiotemporal parameters and upper limb function post-burn in children. Burns 2020, 47, 828–837. [Google Scholar] [CrossRef]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Van Sint Jan, S. The use of commercial video games in rehabilitation: A systematic review. Int. J. Rehabil. Res. 2016, 39, 277–290. [Google Scholar] [CrossRef]
- Fernandes, C.S.; Magalhães, B.; Gomes, J.A.; Santos, C. Exergames to improve Rehabilitation after Anterior Cruciate Ligament Injury: Systematic review and GRADE evidence synthesis. Int. J. Orthop. Trauma Nurs. 2022, 44, 100917. [Google Scholar] [CrossRef]
- Fernandes, C.S.; Magalhães, B.; Gomes, J.A.; Santos, C. Exergames to Improve Rehabilitation for Shoulder Injury: Systematic Review and GRADE Evidence Synthesis. Rehabil. Nurs. 2022, 47, 147–159. [Google Scholar] [CrossRef]
- Alves, I.; Moreira, A.P.; Sousa, T.; Teles, P.; Magalhães, B.M.; Goncalves, F.; Fernandes, C.S. Impact of Exergames on the Rehabilitation of Cancer Patients Undergoing Major Abdominal Surgery: A Randomized Controlled Trial. Cancer Nurs. 2025, 48, 239–244. [Google Scholar] [CrossRef]
- Jiaqi, L.; JiLiang, L.; Youfen, F.; Chun, Z.; Neng, H. Effects of virtual Reality on Analgesia in Wound Care and Physical Therapy for Burn Patients: A Systematic Review and Meta-Analysis. Pain Manag. Nurs. 2024, 25, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Tan, Z.; Zhou, T.; Huang, Z.; Huang, Z.; Wang, C.; Chen, Z.; Ma, Y.; Kang, T.; Gu, Y.; et al. Use of Virtual Reality in Burn Rehabilitation: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2023, 104, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.R.; Selim, A.O.; Abdel Ghafar, M.A.; Abdelraouf, O.R.; Ali, O.I. Virtual reality as a pain distractor during physical rehabilitation in pediatric. Burns 2022, 48, 303–308. [Google Scholar] [CrossRef] [PubMed]

| Database | Research Strategy |
|---|---|
| Medline | ((MH “Burns”) OR (MH “Burn Units”) OR (“Burn”) OR (“Burn Unit”) OR (“Burn Patient*”)) AND ((MH “Exergaming”) OR (MH “Gamification”) OR (MH “Video Games”) OR (“Exergaming”) OR (“Gamification”) OR (“Exergame”) OR (“Wii”) OR (“Nintendo”) OR (“Xbox”) OR (“Playstation”) OR (“video games”) OR (“Game”) OR (“Gamming”) OR (“Gamification”) OR (“Serious Game”) OR (“Gamified”)) |
| CINAHL | ((MH “Burns”) OR (MH “Burn Units”) OR (“Burn”) OR (“Burn Unit”) OR (“Burn Patient *”)) AND ((MH “Exergaming”) OR (MH “Gamification”) OR (MH “Video Games”) OR (“Exergaming”) OR (“Gamification”) OR (“Exergame”) OR (“Wii”) OR (“Nintendo”) OR (“Xbox”) OR (“Playstation”) OR (“video games”) OR (“Game”) OR (“Gamming”) OR (“Gamification”) OR (“Serious Game”) OR (“Gamified”)) |
| Scopus | ((“Burn*” or “Burn Unit*” or “Burn Patient *”)) AND ((“Exergaming” or “Gamification” or “Exergame *” or “Wii” or “Nintendo” or “Xbox” or “Playstation” or “Video Games” or “Game” or “Gaming” or “Serious game” or “Gamified”)) |
| SciELO | ((“Burn*” or “Burn Unit *” or “Burn Patient*”)) AND ((“Exergaming” or “Gamification” or “Exergame *” or “Wii” or “Nintendo” or “Xbox” or “Playstation” or “Video Games” or “Game” or “Gaming” or “Serious game” or “Gamified”)) |
| Cochrane | ((“Burn*” or “Burn Unit *” or “Burn Patient *”)) AND ((“Exergaming” or “Gamification” or “Exergame *” or “Wii” or “Nintendo” or “Xbox” or “Playstation” or “Video Games” or “Game” or “Gaming” or “Serious game” or “Gamified”)) |
| Sports Discus | ((DE “Burns”) OR (DE “Burn Units”) OR (“Burn”) OR (“Burn Unit”) OR (“Burn Patient *”)) AND ((DE “Exergame”) OR (“Gamification”) OR (“Video Games”) OR (“Exergaming”) OR (“Gamification”) OR (“Exergame”) OR (“Wii”) OR (“Nintendo”) OR (“Xbox”) OR (“Playstation”) OR (“video games”) OR (“Game”) OR (“Gamming”) OR (“Gamification”) OR (“Serious Game”) OR (“Gamified”)) |
| Legend: * Represents truncation to include different word endings in the search strategy |
| Study | Criteria | Total | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | ||
| Yohannan et al., (2011) [19] | N | N | Y | N | N | Y | Y | Y | Y | Y | Y | Y | U | 8/13 |
| Parker et al., (2016) [16] | Y | N | Y | N | N | U | Y | Y | Y | Y | Y | Y | Y | 9/13 |
| Parry et al., (2015) [17] | Y | N | Y | N | N | U | Y | U | Y | Y | Y | Y | Y | 8/13 |
| Voon et al., (2016) [8] | Y | Y | Y | N | N | Y | Y | Y | Y | Y | Y | Y | Y | 11/13 |
| Lozano et al., (2018) [21] | N | N | Y | N | N | N | Y | Y | Y | Y | Y | Y | Y | 8/13 |
| Radwan et al., (2020) [22] | Y | N | Y | N | N | Y | Y | Y | Y | Y | Y | Y | Y | 10/13 |
| Basha et al., (2022) [14] | Y | N | Y | N | N | Y | Y | Y | Y | Y | Y | Y | Y | 10/13 |
| Author, Year, Country | Study Objective | Participants | Intervention | Instruments | Limitations | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| N | Gender | Age | TBSA | Body Part Injured | Exergame | Aim | Phase | Frequency | Intensity | ||||
| [19] Yohannan et al., 2011, USA | To evaluate the feasibility and effects of Nintendo Wii–based rehabilitation in patients with acute burns | 23 | 10 F 13 M | 20–78 | 0.5–23% | Wrist, elbow, shoulder, hips, knees and ankles | Nintendo Wii | Pain, anxiety, range of motion, functionality, satisfaction, sense of presence | Inpatient | 15 min, 3 sessions in 3 consecutive days | Not described | Presence, Enjoyment, VAS, Anxiety, AROM, Valpar 9 Whole Body Range of motion, Work Sample Test | Learning curve not considered; Wii not optimized for rehabilitation; animations and small screen limited user experience |
| [16] Parker et al., 2016, Australia | To evaluate the feasibility of Nintendo Wii as an adjuvant in the rehabilitation of patients with severe burns | 22 | 5 F 17 M | 16–59 | 0.5–10% | Upper and lower limbs | Nintendo Wii | Pain, fear, range of motion | Inpatient | 20–30 min, 2 times a day for 5 days | Not described | VAS, PASS, ROM | No limitations related to the use of the exergame are described |
| [20] Parry et al., 2015, USA | To compare the results of conventional therapy and video game therapy in pediatric patients | 17 | 3 F 14 M | 5–18 | Mean: 48% | Axilla, shoulder | Playstation II Eye Toy (PE) | Range of motion, pain | Inpatient and outpatient | 25 to 35 min, 2 times a day, 5 days a week for 3 weeks (hospitalization) + 6 months (outpatient) | Progression and intensity were based on game scores | ROM, VAS | No limitations related to the use of the exergame are described |
| [7] Voon et al., 2016, Australia | To compare the results of conventional therapy and Xbox Kinect -based rehabilitation as adjuvant | 30 | 11 F 19 M | 23–40 | 1.5–7% | Shoulder, arm, wrist and hand | Xbox Kinect | Physical activity, functionality, pain | Inpatient and outpatient | 15 min, 2 times a day for 7 days | Not described | Rehabilitation activity, QuickDASH, VAS, TAMPA | Dressings hindered device detection; intervention time overestimated; ROM not monitored; sensor range limited use in bedridden patients |
| [21] Lozano et al., 2018, South Africa | To investigate the effect of using Xbox Kinect as an adjuvant to physical therapy after hospital discharge | 66 | 29 F 37 M | 5–9 | 4.5–16% | Head, neck, upper and lower limbs, trunk, buttocks and genitals | Xbox Kinect | Range of motion, physical activity, enjoyment, satisfaction | Inpatient | 15 to 30 min, 2 times a sessions (7 to 20 sessions) | Not described | ROM, ASK©p scores, Fun and enjoyment | No limitations related to the use of the exergame are described |
| [22] Radwan et al., 2020, Egypt | To compare the effect of Nintendo Wii intervention with conventional rehabilitation in burned children | 44 | 17 F 27 M | 7–12 | 4–9% | Hand, shoulder, face, arm, forearm and wrist | Nintendo Wii | Spatiotemporal parameters, functionality | Outpatient | 30 min, 3 times a week for 6 weeks | Not described | spatiotemporal parameters, JHFT | Intervention with Nintendo Wii must be carried out under supervision |
| [14] Basha et al., 2022, Egypt | Improve functionality, mobility, exercise capacity muscle, strength and balance with Wii Fit based rehabilitation | 34 | 9 F 25 M | 18–40 | >40% | Lower limbs | Wii Fit | Strength, aerobic, and balance | Outpatient | 30 min, 3 days a week for 12 weeks | Progression and intensity were based on game scores | HiMAT, LLFI, 6MWT, quadriceps and hamstring strength, stability index and TUG | Three-dimensional analysis of the movement responsible for walking not allowed |
| Outcome | Instrument | Reference | Control Group (Mean) | Intervention Group (Mean) | p Value |
|---|---|---|---|---|---|
| ROM | Goniometry Shoulder flexion (hand to head) | Parry et al., 2015 [20] | 7.6 | 10.2 | <0.001 |
| Goniometry Shoulder abduction (hand to head) | Parry et al., 2015 [20] | 2.4 | 1.9 | <0.001 | |
| Goniometry Neck flexion (hand to head) | Parry et al., 2015 [20] | 2.9 | −2.3 | 0.009 | |
| Goniometry Elbow flexion (hand to head) | Parry et al., 2015 [20] | 3.8 | 2.2 | 0.004 | |
| Goniometry Shoulder flexion (High reach) | Parry et al., 2015 [20] | 16.4 | 9.3 | 0.04 | |
| Goniometry Shoulder abduction (High reach) | Parry et al., 2015 [20] | −16.4 | −4.4 | 0.36 | |
| Goniometry Elbow extension (High reach) | Parry et al., 2015 [20] | 9.8 | 1.2 | 0.51 | |
| Goniometry Shoulder flexion (wave) | Parry et al., 2015 [20] | 8.5 | 6.0 | 0.27 | |
| Goniometry Shoulder abduction (wave) | Parry et al., 2015 [20] | −4.43 | −1.7 | 0.36 | |
| Goniometry Shoulder ext rot (wave) | Parry et al., 2015 [20] | −6.9 | −3.5 | 0.152 | |
| Goniometry | Yohannan et al., 2011 [19] | 1.71 | 2.26 | 0.81 | |
| Goniometry | Lozano et al., 2018 [21] | 15.3 | 18.8 | <0.01 | |
| Goniometry Shoulder abduction | Parker et al., 2016 [16] | 0 | 1 | 0.94 | |
| Goniometry Elbow flexion | Parker et al., 2016 [16] | 0 | −2.5 | >1 | |
| Goniometry Elbow extension | Parker et al., 2016 [16] | 0 | 0 | >1 | |
| Goniometry Wrist flexion | Parker et al., 2016 [16] | 15 | −1.5 | >1 | |
| Goniometry Wrist extension | Parker et al., 2016 [16] | −1.5 | −1 | >1 | |
| Goniometry Hand span (cm) | Parker et al., 2016 [16] | 0.5 | 1.5 | >1 | |
| Goniometry Pulp to distal palmar crease (cm) | Parker et al., 2016 [16] | 0 | 0 | >1 | |
| Goniometry Knee flexion | Parker et al., 2016 [16] | 14 | −8 | >1 | |
| Goniometry Knee extension | Parker et al., 2016 [16] | 0 | 0 | >1 | |
| Goniometry Ankle dorsiflexion | Parker et al., 2016 [16] | 4 | 10 | >1 | |
| Goniometry Plantar Flexion | Parker et al., 2016 [16] | 5 | −5 | >1 | |
| Balance | SI | Basha et al., 2022 [14] | 3.92 | 2.35 | 0.0006 |
| TUG | Basha et al., 2022 [14] | 12.71 | 7.82 | 0.0003 | |
| Pain | Pain scale | Parry et al., 2015 [20] | +0.18 | +0.047 | 0.02 |
| VAS | Yohannan et al., 2011 [19] | 0.65 | 0.32 | 0.07 | |
| APS | Voon et al., 2016 [7] | +0.73 | +0.30 | 0.111 | |
| Fear | PASS | Parker et al., 2016 [16] | −4.5 | −12 | >1 |
| TAMPA | Voon et al., 2016 [7] | 37.4 | 36.9 | 0.754 | |
| Heart rate and perceived exertion | Heart Rate | Parry et al., 2015 [20] | 8.4 | 13.5 | 0.91 |
| Perceived exertion | Parry et al., 2015 [20] | 3.2 | 3.9 | 0.41 | |
| Satisfaction | Enjoyment and presence | Yohannan et al., 2011 [19] | 0.30 | 0.39 | 0.73 |
| Satisfaction index | Voon et al., 2016 [7] | 7.8 | 8.53 | <0.0001 | |
| Fun and Enjoyment | Lozano et al., 2018 [21] | 3 | 5 | <0.01 | |
| Compliance (mean) | Parry et al., 2015 [20] | 85% | 90% | 0.43 | |
| Compliance | Voon et al., 2016 [7] | 26.7 | 49.37 | <0.001 | |
| Muscle strength | Quadriceps strength | Basha et al., 2022 [14] | 66.18 | 75.59 | 0.0001 |
| Hamstring strength | Basha et al., 2022 [14] | 57.76 | 65.06 | 0.001 | |
| Anxiety | VAS | Yohannan et al., 2011 [19] | 0.23 | 0.12 | 0.77 |
| Function | HiMAT | Basha et al., 2022 [14] | 39.29 | 46.29 | 0.001 |
| LLFI | Basha et al., 2022 [14] | 63.59 | 74.94 | 0.0005 | |
| 6MWT | Basha et al., 2022 [14] | 387.29 | 460.35 | 0.0004 | |
| JHFT | Radwan et al., 2020 [22] | −3.91 | −9.87 | <0.001 | |
| Valpar 9 Whole | Yohannan et al., 2011 [19] | - 0.74 | −1.12 | 0.43 | |
| QuickDASH | Voon et al., 2016 [7] | 43.7 | 38 | 0.754 | |
| Velocity and whole of movement | Whole movement duration—Hand to Head | Radwan et al., 2020 [22] | −0.03 | −0.1 | <0.001 |
| Whole movement duration—Hand to Mouth | Radwan et al., 2020 [22] | −0.05 | −0.09 | <0.001 | |
| Whole movement duration—Hand to Contralateral Shoulder | Radwan et al., 2020 [22] | −0.06 | −0.13 | <0.001 | |
| Peak velocity—Hand to Head | Radwan et al., 2020 [22] | 0.02 | 0.34 | <0.001 | |
| Peak velocity—Hand to Mouth | Radwan et al., 2020 [22] | 0.16 | 0.27 | <0.001 | |
| Peak velocity—Hand to Contralateral Shoulder | Radwan et al., 2020 [22] | 0.13 | 0.3 | <0.001 | |
| Time to peak velocity—Hand to Head | Radwan et al., 2020 [22] | −1.9 | −15.38 | <0.001 | |
| Time to peak velocity—Hand to Mouth | Radwan et al., 2020 [22] | −12.27 | −23.75 | <0.001 | |
| Time to peak velocity—Hand to Contralateral Shoulder | Radwan et al., 2020 [22] | −21.15 | −29.01 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the European Burns Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, I.; Ferreira, M.; Fernandes, C.S. Exergames in the Rehabilitation of Burn Patients: A Systematic Review of Randomized Controlled Trials. Eur. Burn J. 2025, 6, 60. https://doi.org/10.3390/ebj6040060
Santos I, Ferreira M, Fernandes CS. Exergames in the Rehabilitation of Burn Patients: A Systematic Review of Randomized Controlled Trials. European Burn Journal. 2025; 6(4):60. https://doi.org/10.3390/ebj6040060
Chicago/Turabian StyleSantos, Inês, Marta Ferreira, and Carla Sílvia Fernandes. 2025. "Exergames in the Rehabilitation of Burn Patients: A Systematic Review of Randomized Controlled Trials" European Burn Journal 6, no. 4: 60. https://doi.org/10.3390/ebj6040060
APA StyleSantos, I., Ferreira, M., & Fernandes, C. S. (2025). Exergames in the Rehabilitation of Burn Patients: A Systematic Review of Randomized Controlled Trials. European Burn Journal, 6(4), 60. https://doi.org/10.3390/ebj6040060

