Early Detection, Diagnosis, Prevention, and Treatment of Infection to Avoid Sepsis and Septic Shock in Severely Burned Patients: A Narrative Review
Abstract
:Highlights
- Plasma levels of the N-terminal fragment of the pro-hormone brain-type natriuretic peptide forecast more accurately the development of early infection and sepsis than procalcitonin in cases of grave burned. Revolutionary new biomarkers include the use of polymerase chain reaction (PCR) and gene expression (mRNA) profiling to gain a diagnostic advantage over current methodologies, allowing detection as early as 4 to 6 h after intensive care unit admission. Mass spectrometry is a revolutionary recent tool for the rapid determination of bacteria, yeast, and fungi based on their bacteria protein profiles.
- Unfortunately, these tools are not readily available at the bedside in most burn centers, leaving burn intensivists to rely primarily on clinical criteria and older biomarkers (C-reactive protein and procalcitonin), likely due to cost considerations.
- The early detection, diagnosis, anticipation, and therapy of infection to avoid sepsis and septic shock remain significant challenges in severely burned patients. The limited number of burn centers worldwide makes it difficult to conduct randomized controlled studies that are crucial for improving the early detection, prevention, and treatment of infections to prevent sepsis and septic shock. Large congresses on burn infections are urgently needed to gather a majority of burn intensivists from around the world to launch these essential randomized controlled studies.
Abstract
1. Background
2. Proposed Algorithm to Differentiate Colonization from Deep Skin Infection
Factors Favoring Deep Skin Infections (In Order of Importance)
- (1)
- Positivity of bacteremia (although the lack of bacteremia does not eliminate the presence of sepsis).
- (2)
- Positivity of (massive inflammation) criteria.
- (3)
- Presence of sepsis or septic shock.
- (4)
- Rapid and significant elevation of biomarkers within 12 h.
- (5)
- Sharp and significant elevation of liver enzymes within 12 h.
- (6)
- Rapid and marked elevation of leukocytosis within 12 h, accompanied by evidence of disseminated intravascular coagulation (DIC).
- (7)
- Recent quantitative positive cultures from a central or arterial line (compared with blood cultures through a venous puncture), showing that the infection is linked to a catheter rather than a deep skin infection.
3. Review—Core Text
3.1. Detection of Early Infection
3.1.1. Use of Bacterial and Fungal Biomarkers to Detect Early Infection
3.1.2. American Burn Association Consensus Panel Publication on Criteria to Detect Early Infection in Severe Burn Cases, Including a Critical Review of the Criteria
- Invasive Burn Wound Infection
- Inflammation: Edema, erythema, warmth, or tenderness in the vicinity of normal skin.
- Histopathologic Evidence: Invasion of the infectious bacteria in the vicinity of normal tissue observed in a burn biopsy specimen.
- Positive Blood Culture: Bacterial growth in a blood specimen with a lack of auxiliary recognizable infections.
- Global Signals of Infection: Hyperthermia, hypothermia, leukocytosis, tachypnea, hypotension, oliguria, hyperglycemia at a formerly authorized value of dietary carbohydrate, or mental disorientation.
- 2.
- Noninvasive (Local) Burn Wound Infection
- Loss of Wound Covering: Loss of synthetic or biologic coverings of the wound.
- Changes in Wounds: Aspect like hyperemia.
- Erythema: In the normal skin in the vicinity of the wound.
- Global Signals: Hyperthermia or leukocytosis.
- 3.
- Microorganisms Responsible for Burn Wound Infections
- 4.
- Antimicrobial Resistance
- 5.
- Limitations of the ABA Criteria and the Need for Additional Diagnostic Tools
- 6.
- Recent Guidelines and Triggers for Considering Sepsis in Burn Patients
- Change in SOFA ≥ 2 Points: Indicates new or worsening organ dysfunction.
- Lactate Level > 2 mmol/L (>18 mg/dL): Serves as a surrogate for base deficit and indicates hypoperfusion.
- Temperature Modification: New onset of fever or hypothermia (no consensus on threshold temperature).
- Sudden Fall in Platelet Values: Suggestive of coagulation abnormalities.
- Decrease in Urine Output/Increased Fluid Requirements: Indicates potential renal dysfunction.
- Kidney Disease Improving Global Outcome (KDIGO) Acute Kidney Injury Stage ≥ 1: Best practice statement.
- Pulmonary: Modifications such as increased respiratory rate or need for ventilator support.
- Alterations in Mental Status: Including confusion or decreased level of consciousness.
- Gastrointestinal Dysfunction: Signs like iléus or absent bowel sounds.
- Changes in Wound Aspect Evocating Infection: As previously described in the criteria.
- Procalcitonin Rise ≥ 2 ng/mL from Initial Value: May indicate bacterial infection.
3.1.3. Other Classical Biomarkers in Routine Laboratory Analyses
4. Diagnosis Sepsis
4.1. Comparison of Different Criteria to Diagnose Early Sepsis in Severely Burned Patients
4.2. Comparison Between Burned Patients and Non-Burned Intensive Care Patients in the Diagnosis of Sepsis
4.3. The Mann-Salinas Criteria for Diagnosing Sepsis
5. Advances in Sepsis and Infection Detection Beyond Suboptimal Criteria and Biomarkers
6. Current Bedside Practices for Preventing and Treating Early Infection
7. Treating Early Infections: Specific Considerations for Burn Units
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Honore, P.M.; Spapen, H.D. The struggle to differentiate inflammation from infection in severely burned patients: Time to send better biomarkers into the arena? Crit. Care 2016, 20, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lavrentieva, A.; Papadopoulou, S.; Kioumis, J.; Kaimakamis, E.; Bitzani, M. PCT as a diagnostic and prognostic tool in burn patients. Whether time course has a role in monitoring sepsis treatment. Burns 2012, 38, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Gibran, N.S.; Wiechman, S.; Meyer, W.; Edelman, L.; Fauerbach, J.; Gibbons, L.; Holavanahalli, R.; Hunt, C.; Keller, K.; Kirk, E.; et al. Summary of the 2012 ABA Burn Quality Consensus conference. J. Burn Care Res. 2013, 34, 361–385. [Google Scholar] [CrossRef] [PubMed]
- Paratz, J.D.; Lipman, J.; Boots, R.J.; Muller, M.J.; Peterson, D.L. New marker of sepsis post burn injury. Crit. Care Med. 2014, 42, 2029–2036. [Google Scholar] [CrossRef]
- Li, A.T.; Moussa, A.; Gus, E.; Paul, E.; Yii, E.; Romero, L.; Lin, Z.; Padiglione, A.; Lo, C.H.; Cleland, H.; et al. Biomarkers for the Early Diagnosis of Sepsis in Burns: Systematic Review and Meta-analysis. Ann. Surg. 2022, 275, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Cakır Madenci, Ö.; Yakupoğlu, S.; Benzonana, N.; Yücel, N.; Akbaba, D.; Orçun, K.A. Evaluation of soluble CD14 subtype (presepsin) in burn sepsis. Burns 2014, 40, 664–669. [Google Scholar] [CrossRef]
- Zu, H.; Li, Q.; Huang, P.; Wang, X. Therapeutic Value of Blood Purification and Prognostic Utilities of Early Serum Procalcitonin, C Reactive Protein, and Brain Natriuretic Peptide Levels in Severely Burned Patients with Sepsis. Cell Biochem. Biophys. 2015, 72, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Turxun, N.; Ning, F. Meta-analysis of the diagnostic value of procalcitonin in adult burn sepsis. Adv. Clin. Exp. Med. 2021, 30, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: Review and advancements. Crit. Care 2015, 19, 243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mann, E.A.; Wood, G.L.; Wade, C.E. Use of procalcitonin for the detection of sepsis in the critically ill burn patient: A systematic review of the literature. Burns 2011, 37, 549–558. [Google Scholar] [CrossRef]
- American Burn Association Consensus Conference on Burn Sepsis and Infection Group; Greenhalgh, D.G.; Saffle, J.R.; Holmes, J.H., IV; Gamelli, R.L.; Palmieri, T.L.; Horton, J.W.; Tompkins, R.G.; Traber, D.L.; Mozingo, D.W.; et al. American Burn Association consensus conference to define sepsis and infection in burns. J. Burn Care Res. 2007, 28, 776–790. [Google Scholar] [CrossRef]
- Kaita, Y.; Tarui, T.; Otsu, A.; Tanaka, Y.; Suzuki, J.; Yoshikawa, K.; Yamaguchi, Y. The Clinical Significance of Serum 1,3-β-D-Glucan For the Diagnosis of Candidemia in Severe Burn Patients. J. Burn Care Res. 2019, 40, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Honore, P.M.; Jacobs, R.; De Waele, E.; Spapen, H.D. Biomarkers to detect sepsis: A “burning” issue but still a long way to go*. Crit. Care Med. 2014, 42, 2137–2138. [Google Scholar] [CrossRef] [PubMed]
- Tejiram, S.; Shupp, J.W. Innovations in infections prevention and treatment. Surg. Infect. 2021, 22, 12–19. [Google Scholar] [CrossRef]
- Greenhalgh, D.G.; Hill, D.M.; Burmeister, D.M.; Gus, E.I.; Cleland, H.; Padiglione, A.; Holden, D.; Huss, F.; Chew, M.S.; Kubasiak, J.C.; et al. Surviving Sepsis After Burn Campaign. Burns 2023, 49, 1487–1524. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Kym, D.; Hur, J.; Park, J.; Kim, M.; Cho, Y.S.; Chun, W.; Yoon, D. The clinical differentiation of blood culture-positive and -negative sepsis in burn patients: A retrospective cohort study. Burns Trauma 2023, 11, tkad031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mann-Salinas, E.A.; Baun, M.M.; Meininger, J.C.; Murray, C.K.; Aden, J.K.; Wolf, S.E.; Wade, C.E. Novel predictors of sepsis outperform the American Burn Association sepsis criteria in the burn intensive care unit patient. J. Burn Care Res. 2013, 34, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, J.; Hill, W.F.; Rehou, S.; Pinto, R.; Shahrokhi, S.; Jeschke, M.G. Sepsis criteria versus clinical diagnosis of sepsis in burn patients: A validation of current sepsis scores. Surgery 2018, 164, 1241–1245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Greenhalgh, D.G. Sepsis in the burn patient: A different problem than sepsis in the general population. Burns Trauma 2017, 5, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torres, M.J.M.; Peterson, J.M.; Wolf, S.E. Detection of Infection dand sepsis in Burns. Surg. Infect. 2021, 22, 20–27. [Google Scholar] [CrossRef]
- Hogan, B.K.; Wolf, S.E.; Hospenthal, D.R.; D’Avignon, L.C.; Chung, K.K.; Yun, H.C.; Mann, E.A.; Murray, C.K. Correlation of American burn Association sepsis criteria with the presence of Bacteriemia in Burned patients admitted to the intensive care unit. J. Burn Care Res. 2012, 33, 371–378. [Google Scholar] [CrossRef]
- Dvorak, J.E.; Ladhani, H.A.; Claridge, J.A. Review of Sepsis in Burn Patients in 2020. Surg. Infect. 2021, 22, 37–43, Erratum in Surg. Infect. 2021, 22, 989. [Google Scholar] [CrossRef] [PubMed]
- Boehm, D.; Menke, H. Sepsis in Burns-Lessons Learnt from Developments in the Management of Septic Shock. Medicina 2021, 58, 26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chipp, E.; Milner, C.S.; Blackburn, A.V. Sepsis in burns: A review of current practice and future therapies. Ann. Plast. Surg. 2010, 65, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, T.E.; Khatri, P. Comprehensive Validation of the FAIM3:PLAC8 Ratio in Time-matched Public Gene Expression Data. Am. J. Respir. Crit. Care Med. 2015, 192, 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Gunsolus, I.L.; Sweeney, T.E.; Liesenfeld, O.; Ledeboer, N.A. Diagnosing and Managing Sepsis by Probing the Host Response to Infection: Advances, Opportunities, and Challenges. J. Clin. Microbiol. 2019, 57, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Maslove, D.M.; Shapira, T.; Tyryshkin, K.; Veldhoen, R.A.; Marshall, J.C.; Muscedere, J. Validation of diagnostic gene sets to identify critically ill patients with sepsis. J. Crit. Care 2018, 49, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Grenga, L.; Pible, O.; Armengaud, J. Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns. Clin. Mass. Spectrom. 2019, 14 Pt A, 9–17. [Google Scholar] [CrossRef]
- Schubert, S.; Kostrzewa, M. MALDI-TOF MS in the Microbiology Laboratory: Current Trends. Curr. Issues Mol. Biol. 2017, 23, 17–20. [Google Scholar] [CrossRef]
- Dingle, T.C.; Butler-Wu, S.M. Maldi-tof mass spectrometry for microorganism identification. Clin. Lab. Med. 2013, 33, 589–609. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, M.F.; Schwab, C.W.; McGonigal, M.D.; Phillips, G.R.; Fruchterman, T.M.; Kauder, D.R. ‘Damage control’: An approach for improved survival in exsanguinating penetrating abdominal injury. J. Trauma 1993, 35, 375–382. [Google Scholar] [CrossRef]
- Bruyninckx, L.; Jennes, S.; Pirnay, J.P.; de Schoutheete, J.C. Burn or trauma scoring: Experience of the burn unit of the Queen Astrid Military Hospital during the terror attacks on 22 March 2016. Eur. J. Trauma Emerg. Surg. 2024, 50, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.P.L.H.; Cancio, L.C.; McManus, A.T.; Mason, A.D., Jr. Survival benefit conferred by topical antimicrobial preparation in burn patients: A historical perspective. J. Trauma 2004, 56, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Maillard, J.Y.; Bloomfield, S.; Coelho, J.R.; Collier, P.; Cookson, B.; Fanning, S.; Hill, A.; Hartemann, P.; Mcbain, A.J.; Oggioni, M.; et al. Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb. Drug Resist. 2013, 19, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Webber, M.A.; Whitehead, R.N.; Mount, M.; Loman, N.J.; Pallen, M.J.; Piddock, L.J. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J. Antimicrob. Chemother. 2015, 70, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Soumet, C.; Méheust, D.; Pissavin, C.; Le Grandois, P.; Fremaux, B.; Feurer, C.; Le Roux, A.; Denis, M.; Maris, P. Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary compounds. J. Appl. Microbiol. 2016, 12, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Wand, M.E.; Bock, L.J.; Bonney, L.C.; Sutton, J.M. Mechanism of increased resistance to chlorhexidine and cross-resistance do colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob. Agents Chemother. 2016, 61, e01162-16. [Google Scholar] [CrossRef] [PubMed]
- Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infection. Clin. Microbiol. Rev. 2006, 19, 403–434. [Google Scholar] [CrossRef]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef]
- Merabishvili, M.; Monserez, R.; van Belleghem, J.; Rose, T.; Jennes, S.; De Vos, D.; Verbeken, G.; Vaneechoutte, M.; Pirnay, J.-P. Stability of bacteriophages in burn wound care products. PLoS ONE 2017, 12, e0182121. [Google Scholar] [CrossRef]
- Jennes, S.; Merabishvili, M.; Soentjens, P.; Pang, K.W.; Rose, T.; Keersebilck, E.; Soete, O.; François, P.-M.; Teodorescu, S.; Verween, G.; et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosae septicaemia in a patient with acute kidney injury—A case report. Crit. Care 2017, 21, 129. [Google Scholar] [CrossRef] [PubMed]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017, 61, e00954-17. [Google Scholar] [CrossRef]
- Coban, Y.K. Infection control in severely burned patients. World J. Crit. Care Med. 2012, 1, 94–101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Struck, M.F. Infection control in burn patients: Are fungal infections underestimated? Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Latenser, B.A. Critical care of the burn patient: The first 48 hours. Crit. Care Med. 2009, 37, 2819–2826. [Google Scholar] [CrossRef] [PubMed]
- Wardhana, A.; Djan, R.; Halim, Z. Bacterial and antimicrobial susceptibility profile and the prevalence of sepsis among burn patients at the burn unit of Cipto Mangunkusumo Hospital. Ann. Burns Fire Disasters 2017, 30, 107–115. [Google Scholar] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Zhang, P.; Zou, B.; Liou, Y.C.; Huang, C. The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma 2021, 9, tkaa047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeschke, M.G.; Chinkes, D.L.; Finnerty, C.C.; Kulp, G.; Suman, O.E.; Norbury, W.B.; Branski, L.K.; Gauglitz, G.G.; Mlcak, R.P.; Herndon, D.N.; et al. Pathophysiologic response to severe burn injury. Ann. Surg. 2008, 248, 387–401. [Google Scholar] [CrossRef]
- Hart, D.W.; Wolf, S.E.; Mlcak, R.; Chinkes, D.L.; Ramzy, P.I.; Obeng, M.K.; Ferrando, A.A.; Wolfe, R.R.; Herndon, D.N. Persistence of muscle catabolism after severe burn. Surgery 2000, 128, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Deitch, E.A.; Bridges, R.M.; Dobke, M.; McDonald, J.C. Burn wound sepsis may be promoted by a failure of local antibacterial host defenses. Ann. Surg. 1987, 206, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Stanojcic, M.; Abdullahi, A.; Rehou, S.; Parousis, A.; Jeschke, M.G. Pathophysiological response to burn injury in adults. Ann. Surg. 2018, 267, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Supp, A.P.; Neely, A.N.; Supp, D.M.; Warden, G.D.; Boyce, S.T. Evaluation of cytotoxicity and antimicrobial activity of Acticoat Burn Dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J. Burn Care Rehabil. 2005, 26, 238–246. [Google Scholar] [PubMed]
- Harriger, M.D.; Supp, A.P.; Warden, G.D.; Holder, I.A. Effective management of microbial contamination in cultured skin substitutes after grafting to athymic mice. Wound Repair Regen. 1997, 5, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Harriger, M.D.; Supp, A.P.; Swope, V.B.; Boyce, S.T. Reduced engraftment and wound closure of cryopreserved cultured skin substitutes grafted to athymic mice. Cryobiology 1997, 35, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Horch, R.E.; Kopp, J.; Kneser, U.; Beier, J.; Bach, A.D. Tissue engineering of cultured skin substitutes. J. Cell. Mol. Med. 2005, 9, 592–608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the European Burns Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honoré, P.M.; Blackman, S.; Perriens, E.; de Schoutheete, J.-C.; Jennes, S. Early Detection, Diagnosis, Prevention, and Treatment of Infection to Avoid Sepsis and Septic Shock in Severely Burned Patients: A Narrative Review. Eur. Burn J. 2025, 6, 6. https://doi.org/10.3390/ebj6010006
Honoré PM, Blackman S, Perriens E, de Schoutheete J-C, Jennes S. Early Detection, Diagnosis, Prevention, and Treatment of Infection to Avoid Sepsis and Septic Shock in Severely Burned Patients: A Narrative Review. European Burn Journal. 2025; 6(1):6. https://doi.org/10.3390/ebj6010006
Chicago/Turabian StyleHonoré, Patrick M., Sydney Blackman, Emily Perriens, Jean-Charles de Schoutheete, and Serge Jennes. 2025. "Early Detection, Diagnosis, Prevention, and Treatment of Infection to Avoid Sepsis and Septic Shock in Severely Burned Patients: A Narrative Review" European Burn Journal 6, no. 1: 6. https://doi.org/10.3390/ebj6010006
APA StyleHonoré, P. M., Blackman, S., Perriens, E., de Schoutheete, J.-C., & Jennes, S. (2025). Early Detection, Diagnosis, Prevention, and Treatment of Infection to Avoid Sepsis and Septic Shock in Severely Burned Patients: A Narrative Review. European Burn Journal, 6(1), 6. https://doi.org/10.3390/ebj6010006