Chaetognaths (Chaetognatha: Sagittoidea) at the Boundary of the Pacific Ocean and the Gulf of California: Their Relationship with the Summer Circulation Pattern
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Laboratory Analyses
2.4. Data Analyses
2.5. Statistical Analyses
3. Results
3.1. Hydrography
3.2. Chaetognaths Species Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uttieri, M.; Carotenuto, Y.; Di Capua, I.; Roncalli, V. Ecology of Marine Zooplankton. J. Mar. Sci. Eng. 2023, 11, 1875. [Google Scholar] [CrossRef]
- Le Quéré, C.; Harrison, S.P.; Colin, I.; Buitenhuis, E.T.; Aumont, O.; Bopp, L.; Claustre, H.; Cotrim, L.; Geider, R.; Giraud, X.; et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Change Biol. 2005, 11, 2016–2040. [Google Scholar] [CrossRef]
- Pauly, D.; Liang, C.; Xian, W.; Chu, E.; Bailly, N. The sizes, growth and reproduction of arrow worms (Chaetognatha) in light of the Gill-Oxygen Limitation Theory (GOLT). J. Mar. Sci. Eng. 2021, 9, 1397. [Google Scholar] [CrossRef]
- Harzsch, S.; Müller, C.H.; Perez, Y. Chaetognatha. In Evolutionary Developmental Biology of Invertebrates 1; Wanninger, A., Ed.; Springer: Vienna, Austria, 2015; pp. 215–240. [Google Scholar]
- Stukel, M.R.; Irving, J.P.; Kelly, T.B.; Ohman, M.D.; Fender, C.K.; Yingling, N. Carbon sequestration by multiple biological pump pathways in a coastal upwelling biome. Nat. Comm. 2023, 14, 2024. [Google Scholar] [CrossRef]
- Thompson, G.A.; Molinari, G.N.; Ehrlich, M.E.; Daponte, M.C. Distribution, abundance, and reproductive stages of salps, doliolids, and chaetognaths in different water masses of the shelf and open ocean of the Southwestern Atlantic Ocean between 31° and 38° S. J. Mar. Syst. 2024, 246, 10400. [Google Scholar] [CrossRef]
- Borme, D.; Legovini, S.; de Olazabal, A.; Tirelli, V. Diet of Adult Sardine Sardina pilchardus in the Gulf of Trieste, Northern Adriatic Sea. J. Mar. Sci. Eng. 2022, 10, 1012. [Google Scholar] [CrossRef]
- Bone, Q.; Kapp, H.; Pierrot-Bults, A.C. The Biology of Chaetognaths; Oxford University Press: Oxford, UK, 1991; p. 184. [Google Scholar]
- Greer, A.T.; Cowen, R.K.; Guigand, C.M.; Hare, J.A.; Tang, D. The role of internal waves in larval fish interactions with potential predators and prey. Progr. Oceanogr. 2014, 127, 47–61. [Google Scholar] [CrossRef]
- Purushothaman, A.; Thomas, L.C.; Nandan, S.B.; Padmakumar, K.B. Influence of upwelling on the chaetognath community along the Southeastern Arabian Sea. Wetl. Ecol. Manag. 2021, 29, 731–743. [Google Scholar] [CrossRef]
- Nair, V.R.; Kusum, K.K.; Gireesh, R.; Nair, M. The distribution of the chaetognath population and its interaction with environmental characteristics in the Bay of Bengal and the Arabian Sea. Mar. Biol. Res. 2014, 11, 269–282. [Google Scholar] [CrossRef]
- Bisinicu, E.; Lazar, L.; Timofte, F. Dynamics of Zooplankton along the Romanian Black Sea Coastline: Temporal Variation, Community Structure, and Environmental Drivers. Diversity 2023, 15, 1024. [Google Scholar] [CrossRef]
- Bisinicu, E.; Harcota, G.-E.; Lazar, L. Interactions between environmental factors and the mesozooplankton community from the Romanian Black Sea waters. Turk. J. Zool. 2023, 47, 202–215. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, S.; Wang, C.; Yang, J.; Sun, D. Response of size and trophic structure of zooplankton community to marine environmental conditions in the northern South China Sea in winter. J. Plankton Res. 2020, 42, 378–393. [Google Scholar] [CrossRef]
- Ge, R.; Chen, Y.; Chen, H.; Zhang, X.; Shi, J.; Li, H.; Zhuang, Y.; Liu, G. Effects of Yellow Sea Warm Current on zooplankton community composition and functional groups in winter. Mar. Environ. Res. 2024, 202, 106715. [Google Scholar] [CrossRef] [PubMed]
- Laguarda, A. Contribución al conocimiento de los quetognatos de Sinaloa. Anales Inst. Biol. Univ. Nac. Autón. Méx. 1965, 36, 215–228. [Google Scholar]
- Alvariño, A. Quetognatos epiplanctónicos del Mar de Cortés. Rev. Soc. Mex. Hist. Nat. 1963, 24, 97–204. [Google Scholar]
- Alvariño, A. Zoogeografía del Mar de Cortés. Chaetognatha, Siphonophora y Medusas. Anales Inst. Biol. Univ. Nac. Autón. Méx. 1969, 40, 11–54. [Google Scholar]
- Medina, M.D. Análisis Sobre la Distribución Horizontal de Organismos Planctónicos en El Sur Del Golfo de California, Con referencia Especial Al Phylum Chaetognatha. Master’s Thesis, Instituto Politécnico Nacional, Mexico City, Mexico, 1979; p. 76. [Google Scholar]
- Thuesen, E.V.; Haddock, S.H.D. Archeterokrohnia docrickettsae (Chaetognatha: Phragmophora: Heterokrohniidae), a new species of deep-sea arrow worm from the Gulf of California. Zootaxa 2013, 3717, 320–328. [Google Scholar] [CrossRef]
- Quiroz-Martínez, B.; Salas-de-León, D.A.; Gil-Zurita, A.; Monreal-Gómez, M.A.; Coria-Monter, E.; Durán-Campos, E. Latitudinal and archipelago effect on the composition, distribution, and abundance of zooplanktonic organisms in the Gulf of California. Oceanologia 2023, 65, 371–385. [Google Scholar] [CrossRef]
- Whitehead, D.A.; Jakes-Cota, U.; Pancaldi, F.; Galván-Magaña, F.; González-Armas, R. The influence of zooplankton communities on the feeding behavior of whale shark in Bahia de La Paz, Gulf of California. Rev. Mex. Biodiv. 2020, 91, e913054. [Google Scholar] [CrossRef]
- Lavaniegos, B.E.; González-Navarro, E. Grupos principales del zooplancton durante El Niño 1992–93 en el Canal de San Lorenzo, Golfo de California. Rev. Biol. Trop. 1999, 47 (Suppl. 1), 129–140. [Google Scholar]
- Lavaniegos-Espejo, B.E.; Lara-Lara, R. Zooplankton of the Gulf of California after the 1982–1983 EI Nino Event: Biomass Distribution and Abundance. Pac. Sci. 1990, 44, 297–310. [Google Scholar]
- Álvarez-Borrego, S. Phytoplankton biomass and production in the Gulf of California: A review. Bot. Mar. 2012, 55, 119–128. [Google Scholar] [CrossRef]
- Coria-Monter, E.; Monreal-Gómez, M.A.; Salas-de-León, D.A.; Durán-Campos, E. Impact of the “Godzilla El Niño” Event of 2015–2016 on Sea-Surface Temperature and Chlorophyll-a in the Southern Gulf of California, Mexico, as Evidenced by Satellite and In Situ Data. Pac. Sci. 2018, 72, 411–422. [Google Scholar] [CrossRef]
- Sherman, K.; Hempel, G. Perspectives on regional seas and the large marine ecosystem approach. In The UNEP Large Marine Ecosystem Report: A Perspective on Changing Conditions in LMEs of the World’s Regional Seas; Sherman, K., Hempel, G., Eds.; United Nations Environment Programme: Nairobi, Kenia, 2009; pp. 3–22. [Google Scholar]
- Lavín, M.F.; Castro, R.; Beier, E.; Godínez, V.M.; Amador, A.; Guest, P. SST, thermohaline structure, and circulation in the southern Gulf of California in June 2004 during the North American Monsoon Experiment. J. Geophys. Res. 2009, 114, 1–22. [Google Scholar] [CrossRef]
- Durán-Campos, E.; Salas-de-Léon, D.A.; Coria-Monter, E.; Monreal-Gómez, M.A.; Aldeco-Ramírez, J.; Quiroz-Martínez, B. ENSO effects in the southern gulf of California estimated from satellite data. Cont. Shelf Res. 2023, 266, 105084. [Google Scholar] [CrossRef]
- Alvariño, A. Two new chaetognaths from the Pacific. Pac. Sci. 1961, 15, 67–77. [Google Scholar]
- Boltovskoy, D. South Atlantic Zooplankton; Publicaciones especiales del INIDEP: Mar del Plata, Argentina, 1999; p. 1075. [Google Scholar]
- Tokioka, T. The taxonomical outline of Chaetognatha. Publ. Seto Mar. Biol. Lab. 1965, 12, 335–357. [Google Scholar] [CrossRef]
- Kramer, D.; Kalin, M.J.; Stevens, E.G.; Thrailkill, J.R.; Zweifel, J.R. Collecting and Processing Data on Fish Eggs and Larvae in the California Current; NOAA Technical Report NMFS 370; NMFS: Seattle, WA, USA, 1972; pp. 1–38. [Google Scholar]
- IOC; SCOR; IAPSO. The International Thermodynamic Equation of Seawater 2010. Calculation and Use of Thermodynamic Properties; Intergovernmental Oceanographic Commission Manuals and Guides No. 56; UNESCO: Paris, France, 2010; p. 196. [Google Scholar]
- Pond, S.; Pickard, G.L. Introductory Dynamical Oceanography; Pergamon Press: Oxford, UK, 1995; p. 329. [Google Scholar]
- Dexter, E.; Rollwagen-Bollens, G.; Bollens, S.M. The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling. Limnol. Oceanogr. Methods 2018, 16, 434–443. [Google Scholar] [CrossRef]
- Clarke, K.R. Non-parametric multivariate analysis of changes in community structure. Austral. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- ter Braak, C.J.F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef]
- Noblezada, M.M.P.; Campos, W.L. Spatial distribution of chaetognaths off the northern Bicol Shelf, Philippines (Pacific coast). ICES J. Mar. Sci. 2008, 65, 484–494. [Google Scholar] [CrossRef]
- Cota-Meza, M.S.; Fernández-Alamo, M.A.; Funes-Rodríguez, R. Abundance of Flaccisagitta enflata and analysis of Chaetognatha community in a circadian cycle in Bahía Magdalena lagoon system Baja California Sur, Mexico. Hidrobiológica 2015, 25, 417–426. [Google Scholar]
- Lie, A.A.; Tse, P.; Wong, C.K. Diel vertical migration and feeding of three species of chaetognaths (Flaccisagitta enflata, Aidanosagitta delicata and Aidanosagitta neglecta) in two shallow, subtropical bays in Hong Kong. J. Plank. Res. 2012, 34, 670–684. [Google Scholar] [CrossRef]
- Ali Panhwar, W.; Bano Mustafa, S. Phenotypic plasticity in grasshoppers and locusts: A review. AJSET 2022, 1, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.E.; Stone, J.P. Diversity, seasonal abundance, and environmental drivers of chaetognath populations in North Inlet Estuary, South Carolina, USA. Ecol. Evol. 2022, 13, e10151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, Z.-L. Estimating optimal salinity and temperature of chaetognaths. J. Mar. Biol. Assoc. UK 2012, 92, 1399–1407. [Google Scholar] [CrossRef]
- Haghi, M.; Savari, A.; Madiseh, S.D.; Zakeri, M. Abundance of pelagic chaetognaths in northwestern Persian Gulf. Plankton Benthos Res. 2010, 5, 44–48. [Google Scholar] [CrossRef]
- Ulloa, R.; Palma, S.; Silva, N. Bathymetric distribution of chaetognaths and their association with water masses off the coast of Valparaíso, Chile. Deep Sea Res. I 2000, 47, 2009–2027. [Google Scholar] [CrossRef]
- Seibel, B.A.; Dymowska, A.; Rosenthal, J. Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs. Integr. Comp. Biol. 2007, 47, 880–891. [Google Scholar] [CrossRef]
- McGillicuddy, D.J., Jr. Mechanisms of physical-biological-biogeochemical interaction at the Oceanic Mesoscale. Ann. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef]
- Coria-Monter, E.; Monreal-Gómez, M.A.; Salas-de-León, D.A.; Durán-Campos, E.; Merino-Ibarra, M. Wind driven nutrient and subsurface chlorophyll-a enhancements in the Bay of La Paz, Gulf of California. Estuar. Coast. Shelf Sci. 2017, 196, 290–300. [Google Scholar] [CrossRef]
- Wiebe, P.; Hulburt, E.M.; Carpenter, E.J.; Jahn, A.E.; Knapp III, G.P.; Boyd, S.H.; Ortner, P.B.; Cox, J.L. Gulf Stream cold core rings: Large-scale interaction sites for open ocean plankton communities. Deep-Sea Res. Oceanogr. Abstr. 1976, 23, 695–710. [Google Scholar] [CrossRef]
- Piontkovski, S.A.; Williams, R.; Peterson, W.; Kosnirev, V.K. Relationship between oceanic mesozooplankton and energy of eddy fields. Mar. Ecol. Prog. Ser. 1995, 128, 35–41. [Google Scholar] [CrossRef][Green Version]
- Eden, B.R.; Steinberg, D.K.; Goldthwait, S.A.; McGillicuddy, D.J. Zooplankton community structure in a cyclonic and mode-water eddy in the Sargasso Sea. Deep-Sea Res. I 2009, 56, 1757–1776. [Google Scholar] [CrossRef]
- Hernández-León, S.; Almeída, C.; Gómez, M.; Torres, S.; Montero, I.; Portillo- Hahnefeld, A. Zooplankton biomass and indices of feeding and metabolism in island-generated eddies around Gran Canarias. J. Mar. Syst. 2001, 30, 51–66. [Google Scholar] [CrossRef]
- Durán-Campos, E.; Salas de León, D.A.; Monreal-Gómez, M.A.; Aldeco-Ramírez, J.; Coria- Monter, E. Differential zooplankton aggregation due to relative vorticity in a semi-enclosed bay. Estuar. Coast Shelf Sci. 2015, 164, 10–18. [Google Scholar] [CrossRef]
- Rocha-Díaz, F.A.; Monreal-Gómez, M.A.; Coria-Monter, E.; Salas-de-León, D.A.; Durán-Campos, E.; Merino-Ibarra, M. Copepod abundance distribution in relation to a cyclonic eddy in a coastal environment in the southern Gulf of California. Cont. Shelf Res. 2021, 222, 104436. [Google Scholar] [CrossRef]
- Rocha-Díaz, F.A.; Monreal- Gómez, M.A.; Coria-Monter, E.; Salas- de-León, D.A.; Durán-Campos, E.; Cházaro-Olvera, S. The Influence of Summer Cyclonic Circulation in the Southern Gulf of California on Planktonic Copepod Communities. J. Mar. Sci. Eng. 2025, 13, 1394. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de La Rosa-Bernal, M.P.; Durán-Campos, E.; Monreal-Gómez, M.A.; Coria-Monter, E.; Salas-de-León, D.A.; Cházaro-Olvera, S. Chaetognaths (Chaetognatha: Sagittoidea) at the Boundary of the Pacific Ocean and the Gulf of California: Their Relationship with the Summer Circulation Pattern. Oceans 2025, 6, 76. https://doi.org/10.3390/oceans6040076
de La Rosa-Bernal MP, Durán-Campos E, Monreal-Gómez MA, Coria-Monter E, Salas-de-León DA, Cházaro-Olvera S. Chaetognaths (Chaetognatha: Sagittoidea) at the Boundary of the Pacific Ocean and the Gulf of California: Their Relationship with the Summer Circulation Pattern. Oceans. 2025; 6(4):76. https://doi.org/10.3390/oceans6040076
Chicago/Turabian Stylede La Rosa-Bernal, Mitzi Paulina, Elizabeth Durán-Campos, María Adela Monreal-Gómez, Erik Coria-Monter, David Alberto Salas-de-León, and Sergio Cházaro-Olvera. 2025. "Chaetognaths (Chaetognatha: Sagittoidea) at the Boundary of the Pacific Ocean and the Gulf of California: Their Relationship with the Summer Circulation Pattern" Oceans 6, no. 4: 76. https://doi.org/10.3390/oceans6040076
APA Stylede La Rosa-Bernal, M. P., Durán-Campos, E., Monreal-Gómez, M. A., Coria-Monter, E., Salas-de-León, D. A., & Cházaro-Olvera, S. (2025). Chaetognaths (Chaetognatha: Sagittoidea) at the Boundary of the Pacific Ocean and the Gulf of California: Their Relationship with the Summer Circulation Pattern. Oceans, 6(4), 76. https://doi.org/10.3390/oceans6040076

