Simulated Changes in Tropical Cyclone Size, Accumulated Cyclone Energy and Power Dissipation Index in a Warmer Climate
Abstract
:1. Introduction
2. The CAM5 Climate Model Setup and Its Tropical Storm Frequency Response on the SAFFIR-Simpson Scale to Warming
3. Storm Size
4. Accumulated Cyclone Energy Index (ACE)
5. Power Dissipation Index (PDI)
6. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.F.; Bala, G.; Duffy, P.; Mirin, A.A.; Romano, R. Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model. Adv. Meteorol. 2010, 2010, 915303. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.A.; Bacmeister, J.T.; Rosenbloom, N.A.; Wehner, M.F.; Bates, S.C.; Lauritzen, P.H.; Truesdale, J.E.; Hannay, C. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys. Res. Lett. 2015, 42, 3603–3608. [Google Scholar] [CrossRef] [Green Version]
- Strachan, J.; Vidale, P.L.; Hodges, K.; Roberts, M.; Demory, M.-E. Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Clim. 2013, 26, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.J.; Camp, J.; Seddon, J.; Vidale, P.L.; Hodges, K.; Vanniere, B.; Mecking, J.; Haarsma, R.; Bellucci, A.; Scoccimarro, E.; et al. Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble. J. Clim. 2020, 33, 2557–2583. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Vecchi, G.A.; Underwood, S.; Delworth, T.L.; Wittenberg, A.T.; Anderson, W.G.; Chen, J.H.; Gudgel, R.G.; Harris, L.M.; Lin, S.J.; et al. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 2015, 28, 9058–9079. [Google Scholar] [CrossRef]
- Reed, K.A.; Jablonowski, C. Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.F.; Reed, K.A.; Li, F.; Bacmeister, J.; Chen, C.-T.; Paciorek, C.; Gleckler, P.; Sperber, K.; Collins, W.D.; Andrew, G.; et al. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst. 2014, 6, 980–997. [Google Scholar] [CrossRef]
- Satoh, M.; Tomita, H.; Yashiro, H.; Kajikawa, Y.; Miyamoto, Y.; Yamaura, T.; Miyakawa, T.; Nakano, M.; Kodama, C.; Noda, A.T.; et al. Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer. Prog. Earth Planet. Sci. 2017, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Am. Meteorol. Soc. 2020, 100, 1987–2007. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical Cyclones and Climate Change Assessment: Part II. Projected Response to Anthropogenic Warming. Bull. Am. Meteorol. Soc. 2019, 101, E303–E322. [Google Scholar] [CrossRef]
- Reed, K.A.; Stansfield, A.M.; Wehner, M.F.; Zarzycki, C.M. Forecasted attribution of the human influence on Hurricane Florence. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Oldenborgh, G.J.; van der Wiel, K.; Sebastian, A.; Singh, R.; Arrighi, J.; Otto, F.; Haustein, K.; Li, S.; Vecchi, G.; Cullen, H. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 2017, 12, 124009. [Google Scholar] [CrossRef]
- Wang, S.Y.S.; Zhao, L.; Yoon, J.H.; Klotzbach, P.; Gillies, R.R. Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett. 2018. [Google Scholar] [CrossRef]
- Risser, M.D.; Wehner, M.F. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during hurricane harvey. Geophys. Res. Lett. 2017, 44, 12457–12464. [Google Scholar] [CrossRef] [Green Version]
- Zarzycki, C.M.; Ullrich, P.A.; Reed, K.A. Metrics for Evaluating Tropical Cyclones in Climate Data. J. Appl. Meteorol. Climatol. 2021, 60, 643–660. [Google Scholar] [CrossRef]
- Patricola, C.M.; Wehner, M.F. Anthropogenic influences on major tropical cyclone events. Nature 2018, 563, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Stansfield, A.M.; Reed, K.A.; Zarzycki, C.M.; Ullrich, P.A.; Chavas, D.R. Assessing Tropical Cyclones’ Contribution to Precipitation over the Eastern United States and Sensitivity to the Variable-Resolution Domain Extent. J. Hydrometeorol. 2020, 21, 1425–1445. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378. [Google Scholar] [CrossRef]
- Zhang, X.; Wan, H.; Zwiers, F.W.; Hegerl, G.C.; Min, S.-K. Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett. 2013, 40, 5252–5257. [Google Scholar] [CrossRef]
- Takayabu, I.; Hibino, K.; Sasaki, H.; Shiogama, H.; Mori, N.; Shibutani, Y.; Takemi, T. Climate change effects on the worst-case storm surge: A case study of Typhoon Haiyan. Environ. Res. Lett. 2015, 10, 064011. [Google Scholar] [CrossRef]
- Wehner, M.F.; Reed, K.A.; Zarzycki, C.M. High-resolution multi-decadal simulation of tropical cyclones, Hurricanes and Climate Change. In Hurricanes and Climate Change; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Oouchi, K.; Yoshimura, J.; Yoshimura, H.; Mizuta, R.; Kusonoki, S.; Noda, A. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteorol. Soc. Japan. Ser. II 2006, 84, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.F.; Reed, K.A.; Loring, B.; Stone, D.; Krishnan, H. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols. Earth Syst. Dyn. 2018, 9, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected response of tropical cyclone intensity and intensification in a global climate model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Bloemendaal, N.; de Moel, H.; Mol, J.M.; Bosma, P.R.M.; Polen, A.N.; Collins, J.M. Adequately reflecting the severity of tropical cyclones using the new Tropical Cyclone Severity Scale. Environ. Res. Lett. 2021, 16, 14048. [Google Scholar] [CrossRef]
- Bosma, C.D.; Wright, D.B.; Nguyen, P.; Kossin, J.P.; Herndon, D.C.; Shepherd, J.M. An Intuitive Metric to Quantify and Communicate Tropical Cyclone Rainfall Hazard. Bull. Am. Meteorol. Soc. 2020, 101, E206–E220. [Google Scholar] [CrossRef]
- Song, J.Y.; Alipour, A.; Moftakhari, H.R.; Moradkhani, H. Toward a more effective hurricane hazard communication. Environ. Res. Lett. 2020, 15, 64012. [Google Scholar] [CrossRef]
- Bacmeister, J.T.; Wehner, M.F.; Neale, R.B.; Gettelman, A.; Hannay, C.; Lauritzen, P.H.; Caron, J.M.; Truesdale, J.E. Exploratory high-resolution climate simulations using the community atmosphere model (CAM). J. Clim. 2014, 27, 3073–3099. [Google Scholar] [CrossRef]
- Stone, D.A.; Christidis, N.; Folland, C.; Perkins-Kirkpatrick, S.; Perlwitz, J.; Shiogama, H.; Wehner, M.F.; Wolski, P.; Cholia, S.; Krishnan, H.; et al. Experiment design of the international CLIVAR C20C+ detection and attribution project. Weather Clim. Extrem. 2019, 24, 100206. [Google Scholar] [CrossRef]
- Mitchell, D.; AchutaRao, K.; Allen, M.; Bethke, I.; Beyerle, U.; Ciavarella, A.; Forster, P.M.; Fuglestvedt, J.; Gillett, N.; Haustein, K.; et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geosci. Model Dev. 2017, 10, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Prabhat; Rübel, O.; Byna, S.; Wu, K.; Li, F.; Wehner, M.; Bethel, W. TECA: A parallel toolkit for extreme climate analysis. In Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef] [Green Version]
- Chavas, D.R.; Lin, N.; Emanuel, K. A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci. 2015, 72, 3647–3662. [Google Scholar] [CrossRef]
- Chavas, D.R.; Lin, N.; Dong, W.; Lin, Y. Observed tropical cyclone size revisited. J. Clim. 2016, 29, 2923–2939. [Google Scholar] [CrossRef]
- Shaevitz, D.A.; Camargo, S.J.; Sobel, A.H.; Jonas, J.A.; Kim, D.; Kumar, A.; Larow, T.E.; Lim, Y.-K.; Murakami, H.; Reed, K.A.; et al. Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst. 2014, 6. [Google Scholar] [CrossRef]
- Guimarães, S.O. Climate models accumulated cyclone energy analysis. In Current Topics in Tropical Cyclone Research; Lupo, A., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Judt, F.; Chen, S.S. Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles. Mon. Weather Rev. 2016, 144, 4395–4420. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Murakami, H.; Li, T.; Hsu, P.C. Contributing factors to the recent high level of accumulated cyclone energy (ACE) and power dissipation index (PDI) in the North Atlantic. J. Clim. 2014, 27, 3023–3034. [Google Scholar] [CrossRef] [Green Version]
- Chavas, D.R.; Reed, K.A. Dynamical aquaplanet experiments with uniform thermal forcing: System dynamics and implications for tropical cyclone genesis and size. J. Atmos. Sci. 2019, 76, 2257–2274. [Google Scholar] [CrossRef]
- Yamada, Y.; Satoh, M.; Sugi, M.; Kodama, C.; Noda, A.T.; Nakano, M.; Nasuno, T. Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model. J. Clim. 2017, 30, 9703–9724. [Google Scholar] [CrossRef]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.A.; Villarini, G.; Chavas, D. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef] [Green Version]
- Chavas, D.R.; Reed, K.A.; Knaff, J.A. Physical understanding of the tropical cyclone wind-pressure relationship. Nat. Commun. 2017, 8, 1360. [Google Scholar] [CrossRef]
- Satoh, M.; Yamada, Y.; Sugi, M.; Komada, C.; Noda, A.T. Constraint on future change in global frequency of tropical cyclones due to global warming. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovern-Mental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
r0 | r1 | r2 | r3 | r4 | r5 | |
---|---|---|---|---|---|---|
Wind Speed Threshold (m/s) | 18 | 33 | 43 | 50 | 58 | 70 |
Category | ||||||
TS (cat 0) | 48.3 | - | - | - | - | - |
1 | 80.9 | 31.6 | - | - | - | - |
2 | 103.1 | 41.0 | 27.7 | - | - | - |
3 | 119.8 | 51.4 | 34.1 | 28.6 | - | - |
4 | 141.1 | 62.7 | 44.6 | 35.6 | 29.5 | - |
5 | 160.4 | 73.2 | 52.4 | 43.4 | 34.2 | 26.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehner, M. Simulated Changes in Tropical Cyclone Size, Accumulated Cyclone Energy and Power Dissipation Index in a Warmer Climate. Oceans 2021, 2, 688-699. https://doi.org/10.3390/oceans2040039
Wehner M. Simulated Changes in Tropical Cyclone Size, Accumulated Cyclone Energy and Power Dissipation Index in a Warmer Climate. Oceans. 2021; 2(4):688-699. https://doi.org/10.3390/oceans2040039
Chicago/Turabian StyleWehner, Michael. 2021. "Simulated Changes in Tropical Cyclone Size, Accumulated Cyclone Energy and Power Dissipation Index in a Warmer Climate" Oceans 2, no. 4: 688-699. https://doi.org/10.3390/oceans2040039
APA StyleWehner, M. (2021). Simulated Changes in Tropical Cyclone Size, Accumulated Cyclone Energy and Power Dissipation Index in a Warmer Climate. Oceans, 2(4), 688-699. https://doi.org/10.3390/oceans2040039