Cetaceans as Exemplars of Evolution and Evolutionary Ecology: A Glossary
Abstract
:1. Introduction
2. Examples of Evolutionary Terms and Concepts
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kellogg, R. The history of whales: Their adaptation to life in the water. Q. Rev. Biol. 1928, 3, 29–76. [Google Scholar] [CrossRef]
- Howell, A.B. Aquatic Mammals: Their Adaptations to Life in the Water; Charles C. Thomas: Springfield, IL, USA, 1930. [Google Scholar]
- Thewissen, J.G.M.; Cooper, L.N.; George, J.C.; Bajpai, S. From land to water: The origin of whales, dolphins, and porpoises. Evol. Educ. Outreach 2009, 2, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.E.; Rommel, S.A. Biology of Marine Mammals; Smithsonian: Washington, DC, USA, 1999. [Google Scholar]
- Reidenberg, J. Anatomical adaptations of aquatic mammals. Anat. Rec. 2007, 290, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Thewissen, J.G.M.; Bajpai, S. Whale origins as a poster child for macroevolution. BioScience 2001, 51, 1037–1049. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, C. At the Water’s Edge: Fish with Fingers, Whales with Legs, and How Life Came Ashore But then Went Back Again; Atria Books: New York, NY, USA, 1999. [Google Scholar]
- Berta, A. Return to the Sea: The Life and Evolutionary Times of Marine Mammals; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Thewissen, J.G.M. The Walking Whales: From Land to Water in Eight Million Years; University of California Press: Berkeley, CA, USA, 2014. [Google Scholar]
- Pyenson, N.D. Spying on Whales: The Past, Present, and Future of Earth’s Most Awesome Creatures; Viking: New York, NY, USA, 2018. [Google Scholar]
- Mueller, T. Valley of the whales. Natl. Geogr. 2010, 218, 118–137. [Google Scholar]
- Giggs, R. Giants of the Deep. The Atlantic 2018, 9. Available online: https://www.theatlantic.com/magazine/archive/2018/09/whale-evolution/565760/ (accessed on 1 April 2020).
- Black, R. How Did Whales Evolve? Smithsonian Magazine. Available online: https://www.smithsonianmag.com/science-nature/how-did-whales-evolve-73276956/ (accessed on 1 April 2020).
- When Whales Walked on Four Legs. Natural History Museum of London. Available online: https://www.nhm.ac.uk/discover/when-whales-walked-on-four-legs.html (accessed on 1 April 2020).
- The Evolution of Whales. University of California Museum of Paleontology. Available online: https://evolution.berkeley.edu/evolibrary/article/evograms_03 (accessed on 1 April 2020).
- Whale Evolution. PBS WGBH Evolution Series Library. Available online: https://www.pbs.org/wgbh/evolution/library/03/4/l_034_05.html (accessed on 1 April 2020).
- Evolution of Whales Animation. Smithsonian Institution. Available online: https://ocean.si.edu/through-time/ancient-seas/evolution-whales-animation (accessed on 1 April 2020).
- Whale Evolution from Walking Whales to Janjucetus. Melbourne Museum-Museums Victoria. Available online: https://museumsvictoria.com.au/website/melbournemuseum/discoverycentre/600-million-years/videos/whale-evolution/index.html (accessed on 1 April 2020).
- Thewissen, J.G.M. The Emergence of Whales: Evolutionary Patterns in the Origins of Cetacea; Springer: New York, NY, USA, 1998. [Google Scholar]
- Mchedlidze, G.A. General Features of the Paleobiological Evolution of Cetacea; Oxonian: New Delhi, India, 1984. [Google Scholar]
- Marx, F.; Lambert, O.; Uhen, M.D. Cetacean Paleobiology; Wiley-Blackwell: London, UK, 2016. [Google Scholar]
- Berta, A.; Sumich, J.L.; Kovacs, K. Marine Mammals: Evolutionary Biology, 3rd ed.; Elsevier/Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- McGowen, M.R.; Gatesy, J.; Wildman, D.E. Molecular evolution tracks macroevolutionary transitions in Cetacea. Trends Ecol. Evol. 2014, 29, 336–346. [Google Scholar] [CrossRef]
- Gatesy, J.; O’Leary, M.A. Deciphering whale origins with molecules and fossils. Trends Ecol. Evol. 2001, 16, 562–571. [Google Scholar] [CrossRef]
- Gould, S.J. Hooking leviathan by its past. Nat. Hist. 1995, 94, 8–15. [Google Scholar]
- O’Leary, M.A.; Uhen, M.D. The time and origin of whales and the role of behavioral changes in the terrestrial-aquatic transition. Paleobiology 1999, 25, 534–556. [Google Scholar] [CrossRef]
- Gatesy, J.; Geiser, J.H.; Chang, J.; Buell, C.; Berta, A.; Meredith, R.W.; Spring, M.S.; McGowen, M.R. A phylogenetic blueprint for a modern whale. Mol. Phylogen. Evol. 2013, 66, 479–506. [Google Scholar] [CrossRef] [PubMed]
- Deméré, T.A.; McGowen, M.R.; Berta, A.; Gatesy, J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst. Biol. 2008, 57, 15–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thewissen, J.G.M.; Hussain, S.T.; Arif, M. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 1994, 263, 210–212. [Google Scholar] [CrossRef] [PubMed]
- Thewissen, J.G.M.; Cohn, M.J.; Stevens, L.S.; Bajpai, S.; Heyning, J.; Horton, W.E., Jr. Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan. Proc. Natl. Acad. Sci. USA 2006, 103, 8414–8418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thewissen, J.G.M.; Williams, E.N. The early radiation of Cetacea (Mammalia): Evolutionary pattern and developmental correlations. Ann. Rev. Ecol. Syst. 2002, 33, 73–90. [Google Scholar] [CrossRef]
- Thewissen, J.G.M.; Cooper, L.N.; Clementz, M.T.; Bajpai, S.; Tiwari, B.N. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 2007, 450, 1190–1191. [Google Scholar] [CrossRef]
- Gingerich, P.D.; Wells, N.A.; Russell, D.E.; Ibrahim Shah, S.M. Origin of whales in epicontinental remnant seas: New evidence from the Early Eocene of Pakistan. Science 1983, 220, 403–406. [Google Scholar] [CrossRef]
- Roston, R.; Roth, V.L. Cetacean skull telescoping brings evolution of cranial sutures into focus: Telescoping and cranial suture evolution. Anat. Rec. 2019, 302, 1055–1073. [Google Scholar] [CrossRef]
- Geisler, J.H.; Colbert, M.W.; Carew, J.L. A new fossil species supports and early origin for toothed whale echolocation. Nature 2014, 508, 383–386. [Google Scholar] [CrossRef]
- Mourlam, M.J.; Orliac, M.J. Infrasonic and ultrasonic hearing evolved after the emergence of modern whales. Curr. Biol. 2017, 27, 1776–1781. [Google Scholar] [CrossRef] [Green Version]
- Pilleri, G. Adaptation to water and the evolution of echolocation in the Cetacea. Ethol. Ecol. Evol. 1990, 2, 135–163. [Google Scholar] [CrossRef]
- Ketten, D.R. The marine mammal ear: Specializations for aquatic audition and echolocation. In The Evolutionary Biology of Hearing; Webster, D.B., Popper, A.N., Fay, R.R., Eds.; Springer: New York, NY, USA, 1992; pp. 717–750. [Google Scholar]
- Werth, A.J. Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. Anat. Rec. 2007, 290, 546–568. [Google Scholar] [CrossRef]
- Fasick, J.I.; Robinson, P.R. Adaptations of cetacean retinal pigments to aquatic environments. Front. Ecol. Evol. 2016, 4, e70. [Google Scholar] [CrossRef] [Green Version]
- Noren, S.R.; Williams, T.M. Body size and skeletal muscle myoglobin of cetaceans: Adaptations for maximizing dive duration. Comp. Biochem. Physiol. A 2000, 126, 181–191. [Google Scholar] [CrossRef]
- McClellan, D.A.; Palfreyman, E.J.; Smith, M.J.; Moss, J.L.; Christensen, R.G.; Sailsbery, J.K. Physicochemical evolution and molecular adaptation of the cetacean and artiodactyl cytochrome b proteins. Mol. Biol. Evol. 2005, 22, 437–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, T.; Xu, S.; Wang, X.; Yu, W.; Zhou, K.; Yang, G. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans. BMC Evol. Biol. 2012, 12, e39. [Google Scholar] [CrossRef] [Green Version]
- Slater, G.J.; Price, S.A.; Santini, F.; Alfaro, M.E. Diversity versus disparity and the radiation of modern cetaceans. Proc. R. Soc. B 2010, 277, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Steeman, M.E.; Hebagaard, M.B.; Fordyce, R.E.; Ho, S.Y.W.; Rabosky, D.L.; Nielsen, R.; Rahbek, C.; Glenner, H.; Sorensen, M.V.; Willersley, E. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 2009, 58, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Marx, F.G.; Fordyce, R.E. Baleen boom and bust: A synthesis of mysticete phylogeny, diversity, and disparity. R. Soc. Open Sci. 2015, 2, e140434. [Google Scholar] [CrossRef] [Green Version]
- Sacher, G.A. Constitutional basis of longevity in the Cetacea: Do the whales and the terrestrial mammals obey the same laws? Rep. Int. Whal. Comm. Spec. Issue 1980, 3, 209–213. [Google Scholar]
- Seim, I.; Ma, S.; Zhou, X.; Gerashchenko, M.V.; Lee, S.G.; Suydam, R.; George, J.C.; Bickham, J.W.; Gladyshev, V.N. The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging 2014, 6, 879–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fertl, D.; Rosen, P.E. Albinism. In Encyclopedia of Marine Mammals, 3rd ed.; Würsig, B., Thewissen, J.G.M., Kovacs, K.M., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 20–21. [Google Scholar]
- Gero, S.; Englhaupt, D.; Rendell, L.; Whitehead, H. Who Cares? Between-group variation in alloparental caregiving in sperm whales. Behav. Ecol. 2009, 20, 838–843. [Google Scholar] [CrossRef]
- Augusto, J.F.; Frasier, T.R.; Whitehead, H. Characterizing alloparental care in the pilot whale (Globicephala melas) population that summers off Cape Breton, Nova Scotia, Canada. Mar. Mamm. Sci. 2016, 33, 440–456. [Google Scholar] [CrossRef]
- Weinpress, M.R.; Herzing, D. Maternal and Alloparental Discipline in Atlantic Spotted Dolphins (Stenella frontalis) in the Bahamas. Anim. Behav. Cogn. 2015, 2, 348–364. [Google Scholar] [CrossRef]
- Hare, M.P.; Cipriano, F.; Palumbi, S.R. Genetic evidence on the demography of speciation in allopatric dolphin species. Evolution 2002, 56, 804–816. [Google Scholar] [CrossRef]
- Connor, R.; Norris, K.S. Are Dolphins Reciprocal Altruists? Am. Nat. 1982, 119, 358–374. [Google Scholar] [CrossRef]
- Pitman, R.L.; Deecke, V.B.; Gabriele, C.M.; Srinivasan, M.; Black, N.; Denkinger, J.; Durban, J.W.; Matthews, E.A.; Matkin, D.R.; Neilson, J.L.; et al. Humpback whales interfering when mammal-eating killer whales attack other species: Mobbing behavior and interspecific altruism? Mar. Mamm. Sci. 2017, 33, 7–58. [Google Scholar] [CrossRef]
- Fordyce, R.E. Cetacean evolution. In Encyclopedia of Marine Mammals, 3rd ed.; Würsig, B., Thewissen, J.G.M., Kovacs, K.M., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 180–185. [Google Scholar]
- Pyenson, N.D.; Sponberg, S.N. Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. J. Mamm. Evol. 2011, 18, e269. [Google Scholar] [CrossRef]
- Didier, G. Time-dependent-asymmetric-linear-parsimonious ancestral state reconstruction. Bull. Math. Biol. 2017, 79, 2334–2355. [Google Scholar] [CrossRef]
- Johnston, C.; Berta, A. Comparative anatomy and evolutionary history of suction feeding in cetaceans. Mar. Mamm. Sci. 2011, 27, 493–513. [Google Scholar] [CrossRef]
- Geisler, J.H.; Luo, Z. The petrosal and inner ear of Herpetocetus sp. (Mammalia: Cetacea) and their implications for the phylogeny and hearing of archaic mysticetes. J. Paleont. 1996, 70, 1045–1066. [Google Scholar] [CrossRef]
- Luo, Z. Homology and transformation of cetacean ectotympanic structures. In The Emergence of Whales: Advances in Vertebrate Paleobiology; Thewissen, J.G.M., Ed.; Springer: Boston, MA, USA, 1998; Volume 1, pp. 269–301. [Google Scholar]
- O’Leary, M.A. Phylogenetic and morphometric reassessment of the dental evidence for a mesonychian and cetacean clade. In The Emergence of Whales: Advances in Vertebrate Paleobiology; Thewissen, J.G.M., Ed.; Springer: Boston, MA, USA, 1998; Volume 1, pp. 133–161. [Google Scholar]
- Simões-Lopes, P.C.; Gutstein, C.S. Notes on the anatomy, positioning and homology of the pelvic bones in small cetaceans (Cetacea, Delphinidae, Pontoporiidae). Lat. Am. J. Aq. Mamm. 2004, 3, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.L. The antitropical factor in cetacean speciation. Evolution 1963, 17, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, H.; Caballero, S.; Collins, A.G.; Brownell, R.L. Evolution of river dolphins. Proc. R. Soc. Lond. B 2001, 268, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Loseto, L.L.; Stern, G.A.; Ferguson, S.H. Size and biomagnification: How habitat selection explains beluga mercury levels. Environ. Sci. Technol. 2008, 42, 3982–3988. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, P.F.; O’Hara, T.M.; Pallant, S.J.; Solomon, K.R.; Muir, D.C. Bioaccumulation of Organochlorine Contaminants in Bowhead Whales (Balaena mysticetus) from Barrow, Alaska. Arch. Environ. Contam. Toxicol. 2002, 42, 497–507. [Google Scholar] [CrossRef]
- Baron, E.; Gimenez, J.; Verborgh, P.; Gauffier, P.; DeStephanis, R.; Eljarrat, E.; Barcelo, D. Bioaccumulation and biomagnification of classical flame retardants, related halogenated natural compounds and alternative flame retardants in three delphinids from Southern European waters. Environ. Pollut. 2015, 203, 107–115. [Google Scholar] [CrossRef]
- Alonso, M.B.; Azevedo, A.; Torres, J.P.; Dorneles, P.R.; Eljarrat, E.; Barcelo, D.; Lailson-Brito, J.; Malm, O. Anthropogenic (PBDE) and naturally-produced (MeO-PBDE) brominated compounds in cetaceans—A review. Sci. Total Environ. 2014, 481, 619–634. [Google Scholar] [CrossRef]
- Bianucci, G.; Sart, G.; Catanzariti, R.; Santini, U. Middle Pliocene cetaceans from Monte Voltraio (Tuscany, Italy) biostratigraphical, paleoecological, and paleoclimatic observations. Rev. Ital. Paleont. Strat. 1998, 104, 1. [Google Scholar]
- Pyenson, N.D.; Irmis, R.B.; Lipps, J.H.; Barnes, L.G.; Mitchell, E.D.; MacLeod, S.A. Origin of a widespread marine bonebed deposited during the middle Miocene Climatic Optimum. Geology 2009, 37, 519–522. [Google Scholar] [CrossRef]
- Borrell, A.; Gomez-Campos, E.; Aguilar, A. Influence of reproduction on stable-isotope rations: Nitrogen and carbon isotope discrimination between mothers, fetuses, and milk in the fin whale, a capital breeder. Physiol. Biochem. Zool. 2016, 89, e684632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiansen, F.; Vikingsson, G.A.; Rasmussen, M.H.; Lusseau, D. Female body condition affects foetal growth in a capital breeding mysticete. Funct. Ecol. 2014, 28, 579–588. [Google Scholar] [CrossRef]
- Roman, J.; McCarthy, J.J. The whale pump: Marine mammals enhance primary productivity in a coastal basin. PLoS ONE 2010, 5, e13255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavery, T.J.; Roudnew, B.; Gill, P.; Seymour, J.; Seuront, L.; Johnson, G.; Mitchell, J.G.; Smetacek, V. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. R. Soc. Lond. B 2010, 277, 3527–3531. [Google Scholar] [CrossRef] [Green Version]
- Werth, A.J. Odontocete suction feeding: Experimental analysis of water flow and head shape. J. Morph. 2006, 267, 1415–1428. [Google Scholar] [CrossRef]
- Werth, A.J. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J. Mamm. 2006, 87, 579–588. [Google Scholar] [CrossRef]
- Bisconti, M. Taxonomy and evolution of the Italian Pliocene Mysticeti (Mammalia, Cetacea): A state of the art. Bull. Soc. Paleont. Ital. 2009, 48, 147–156. [Google Scholar]
- Mead, J.G.; Mitchell, E.D. Atlantic gray whales. In The Gray Whale: Eschrichtius robustus; Jones, M.L., Swartz, S.L., Leatherwood, S., Eds.; Academic Press: San Diego, CA, USA, 1984; pp. 33–53. [Google Scholar]
- Balbuena, J.A.; Raga, J.A. Ecology and host relationships of the whale-louse Isocyamus delphini (Amphipoda: Cyamidae) parasitizing long-finned pilot whales (Globicephala melas) off the Faroe Islands (Northeast Atlantic). Can. J. Zool. 1991, 69, 141–145. [Google Scholar] [CrossRef]
- Mitchell, E. Pigmentation pattern evolution in delphinid cetaceans: An essay in adaptive coloration. Can. J. Zool. 1970, 48, 717–740. [Google Scholar] [CrossRef]
- MacLeod, C.D. The relationship between body mass and relative investment in testes mass in cetaceans: Implications for inferring interspecific variations in the extent of sperm competition. Mar. Mamm. Sci. 2010, 26, 370–380. [Google Scholar] [CrossRef]
- Ainley, D.G.; Ballard, G.; Dugger, K.M. Competition among penguins and cetaceans reveals trophic cascades in the Western Ross Sea, Antarctica. Ecology 2006, 87, 2080–2093. [Google Scholar] [CrossRef]
- Collin, R.; Janis, C.M. Morphological constraints on tetrapod feeding mechanisms: Why were there no suspension-feeding marine reptiles? In Ancient Marine Reptiles; Callaway, J.M., Nicholls, E.L., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 451–466. [Google Scholar]
- O’Keefe, F.R.; Otero, R.A.; Soto-Acuna, S.; O’Gorman, J.P.; Godfrey, S.J.; Chatterjee, S. Cranial anatomy of Morturnia seymourensis from Antarctica, and the evolution of filter feeding in plesiosaurts of the Austral Late Cretaceous. J. Vert. Paleontol. 2017, 37, e1347570. [Google Scholar] [CrossRef]
- Muizon, C. Walrus-like feeding adaptation in a new cetacean from the Pliocene of Peru. Nature 1993, 365, 745–748. [Google Scholar] [CrossRef]
- Muizon, C.; Domning, D.P.; Ketten, D.R. Odobenocetops peruvianus, the walrus-convergent delphinoid (Mammalia: Cetacea) from the early Pliocene of Peru. Smithson. Contrib. Paleobiol. 2002, 93, 223–261. [Google Scholar]
- Fordyce, R.E.; Quilty, P.G.; Daniels, J. Australodelphis mirus, a bizarre new toothless ziphiid-like fossil dolphin (Cetacea: Delphinidae) from the Pliocene of Vestfold Hills, East Antarctica. Antarct. Sci. 2002, 14, 37–54. [Google Scholar] [CrossRef]
- Ballance, L.T. Cetacean ecology. In Encyclopedia of Marine Mammals, 3rd ed.; Würsig, B., Thewissen, J.G.M., Kovacs, K.M., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 172–180. [Google Scholar]
- Caro, T.; Beeman, K.; Stankowich, T.; Whitehead, H. The functional significance of colouration in cetaceans. Evol. Ecol. 2011, 25, e1231. [Google Scholar] [CrossRef]
- Whitehead, H. Gene–culture coevolution in whales and dolphins. Proc. Natl. Acad. Sci. USA 2017, 114, 7814–7821. [Google Scholar] [CrossRef] [Green Version]
- Rendell, L.; Whitehead, H. Culture in whales and dolphins. Behav. Brain Sci. 2001, 24, 309–382. [Google Scholar] [CrossRef] [Green Version]
- Bearzi, G.; Eddy, L.; Piwetz, S.; Reggente, M.A.L.; Cozzi, B. Cetacean behavior toward the dead and dying. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T., Eds.; Springer Nature: Basel, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ishiyama, M. Enamel structure in odontocete whales. Scanning Microsc. 1987, 1, 1071–1079. [Google Scholar]
- Werth, A.J.; Loch, C.; Fordyce, R.E. Enamel microstructure in Cetacea: A case study in evolutionary loss of complexity. J. Mammal Evol. 2019. [Google Scholar] [CrossRef]
- Johnstone, R.A.; Cant, M.A. The evolution of menopause in cetaceans and humans: The role of demography. Proc. R. Soc. Lond. B 2010, 277, 3765–3771. [Google Scholar] [CrossRef] [PubMed]
- Gladden, J.G.B.; Ferguson, M.M.; Clayton, J.W. Matriarchal genetic population structure of North American beluga whales Delphinapterus leucas (Cetacea: Monodontidae). Mol. Ecol. 1997, 6, 1033–1046. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, M.C.; Tolley, K.A.; Michaux, J.R.; Birkun, A.; Ferreira, M.; Jauniaux, T.; Llavona, A.; Ozturk, B.; Ozturk, A.A.; Ridoux, V.; et al. Genetic and historic evidence for climate-driven population fragmentation in a top cetacean predator: The harbour porpoises in European water. Proc. R. Soc. B 2010, 277, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Marques, M.; Machado, A.M.; Barbosa, S.; Fonseca, M.M.; Ruiyo, R.; Castro, L.F.C. Cetacea are natural knockouts for IL20. Immunogenetics 2018, 70, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Foote, A.D.; Vijay, N.; Avila-Arcos, M.C.; Baird, R.; Durban, J.W.; Fumagalli, M.; Gibbs, R.A.; Hanson, M.B.; Korneliussen, T.S.; Martin, M.D.; et al. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat. Commun. 2016, 7, e11693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBruyn, P.J.; Tosh, C.A.; Terauds, A. Killer whale ecotypes: Is there a global model. Biol. Rev. Camb. Philos. Soc. 2013, 88, 62–80. [Google Scholar] [CrossRef] [Green Version]
- Thewissen, J.G.M.; Heyning, J. Embryogenesis and development in Stenella attenuata and other cetaceans. In Reproductive Biology and Phylogeny of Cetacea; Miller, D.L., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 307–329. [Google Scholar]
- Thewissen, J.G.M.; Hieronymus, T.L.; George, J.C.; Suydam, R.; Stimmelmayr, R.; McBurney, D. Evolutionary aspects of the development of teeth and baleen in the bowhead whale. J. Anat. 2017, 230, 549–566. [Google Scholar] [CrossRef] [Green Version]
- Marino, L. A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain. Behav. Evol. 1998, 51, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Perez-Alvarez, M.J.; Olavarria, C.; Moraga, R.; Baker, C.S.; Hamner, R.M.; Poulin, E. Microsatellite markers reveal strong genetic structure in the endemic Chilean dolphin. PLoS ONE 2015, 10, e0123956. [Google Scholar] [CrossRef] [Green Version]
- Beal, A.P.; Kiszka, J.J.; Wells, R.S.; Eirin-Lopez, J.M. The bottlenose dolphin epigenetic aging tool (BEAT): A molecular age estimation tool for small cetaceans. Front. Mar. Sci. 2019, 6, e561. [Google Scholar] [CrossRef] [Green Version]
- Tejada-Martinez, D.; Magalhaes, J.P.; Opazo, J.C. Positive selection and fast turnover rate in tumor suppressor genes reveal how cetaceans resist cancer. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Bearzi, G.; Reggente, M.A.L. Epimeletic behavior. In Encyclopedia of Marine Mammals, 3rd ed.; Würsig, B., Thewissen, J.G.M., Kovacs, K.M., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 337–338. [Google Scholar]
- Caldwell, M.C.; Caldwell, D.K. Epimeletic (care-giving) behavior in Cetacea. In Whales, Dolphins, and Porpoises; Norris, K.N., Ed.; University of California Press: Berkeley, CA, USA, 1966; pp. 755–789. [Google Scholar]
- Berta, A.; Ekdale, E.G.; Cranford, T.W. Review of the cetacean nose: Form, function, and evolution. Anat. Rec. 2014, 297, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Cranford, T.W. The sperm whale’s nose: Sexual selection on a grand scale? Mar. Mamm. Sci. 1999, 15, 1133–1157. [Google Scholar] [CrossRef]
- Marx, F.G.; Fitzgerald, E.M.G.; Fordyce, R.E. Like phoenix from the ashes: How modern baleen whales arose from a fossil “dark age.”. Acta Palaeontol. Pol. 2019, 64, 231–238. [Google Scholar] [CrossRef]
- Armfield, B.A.; Zheng, Z.; Bajpai, S.; Vinyard, C.J.; Thewissen, J.G.M. Development and evolution of the unique cetacean dentition. PeerJ 2013, 1, e24. [Google Scholar] [CrossRef] [Green Version]
- Bejder, L.; Hall, B.K. Limbs in whales and limblessness in other vertebrates: Mechanisms of evolutionary and developmental transformation and loss. Evol. Dev. 2002, 4, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Fahlke, J.M.; Hampe, O. Cranial symmetry in baleen whales (Cetacea, Mysticeti) and the occurrence of cranial asymmetry throughout cetacean evolution. Sci. Nat. 2015, 102, e58. [Google Scholar] [CrossRef]
- Lindberg, D.R.; Pyenson, N.D. Things that go bump in the night: Evolutionary interactions between cephalopods and cetaceans in the tertiary. Lethaia 2007, 40, 335–343. [Google Scholar] [CrossRef]
- Geisler, J.H.; McGowen, M.R.; Yang, G.; Gatesy, J. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evol. Biol. 2011, 11, e112. [Google Scholar] [CrossRef] [Green Version]
- Turvey, S.T.; Pitman, R.L.; Taylor, B.L.; Barlow, J.; Akamatsu, T.; Barrett, L.A.; Zhao, X.; Reeves, R.R.; Stewart, B.S.; Wang, K.; et al. First human-caused extinction of a cetacean species? Biol. Lett. 2007, 3, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Snively, E.; Fahlke, J.M.; Welsh, R.C. Bone-breaking bite force of Basilosaurus isis (Mammalia, Cetacea) from the Late Eocene of Egypt estimated by finite element analysis. PLoS ONE 2015, 10, e0118380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, G.J.; Corkeron, P.J.; Arnold, P. Grouping and fission–fusion dynamics in Australian snubfin and Indo-Pacific humpback dolphins. Anim. Behav. 2011, 82, 1423–1433. [Google Scholar] [CrossRef]
- Best, R.C. The tusk of the narwhal (Monodon monoceros L.): Interpretation of its function (Mammalia: Cetacea). Can. J. Zool. 1981, 59, 2386–2393. [Google Scholar] [CrossRef]
- Nweeia, M.T.; Eichmiller, F.C.; Nutarak, C.; Eidelman, N.; Giuseppetti, A.A.; Quinn, J.; Mead, J.G.; K’issuk, K.; Hauschka, P.V.; Tyler, E.M. Considerations of anatomy, morphology, evolution, and function for narwhal dentition. In Smithsonian at the Poles: Contributions to International Polar Year Science; Lang, M.A., Miller, S.E., Eds.; Smithsonian Press: Washington, DC, USA, 2009; pp. 223–240. [Google Scholar]
- Kiel, S.; Goedert, J.L. Deep-sea food bonanzas: Early Cenozoic whale-fall communities resemble wood-fall rather than seep communities. Proc. R. Soc. Lond. B 2006, 273, 2625–2632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, Y.; Kawato, M.; Yamanaka, T.; Sato-Okoshi, W.; Noda, C.; Tsuchida, S.; Komai, T.; Cubelio, S.S. Three-year investigations into sperm whale-fall ecosystems in Japan. Mar. Ecol. 2007, 28, 219–232. [Google Scholar] [CrossRef]
- McGowen, M.R.; Spaulding, M.; Gatesy, J. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol. Phylogen. Evol. 2009, 53, 891–906. [Google Scholar] [CrossRef]
- Bosio, G.; Malinverno, E.; Villa, I.M.; DiCelma, C.; Gariboldi, K.; Gioncada, A.; Barberini, V.; Urbina, M.; Bianucci, G. Tephrochronology and chronostratigraphy of the Miocene Chilcatay and Pisco formations (East Pisco Basin, Peru). Newslett. Stratigr. 2020, 53, 213–247. [Google Scholar] [CrossRef]
- Gariboldi, K.; Bosio, G.; Malinverno, E.; Gioncada, A.; DiCelma, C.; Villa, I.M.; Urbina, M.; Bianucci, G. Biostratigraphy, geochronology, and sedimentation rates of the upper Miocene Pisco Formation at two important marine vertebrate fossil-bearing sites of southern Peru. Newslett. Stratigr. 2017, 50, 417–444. [Google Scholar] [CrossRef]
- Gioncada, A.; Collareta, A.; Gariboldi, K.; Lambert, O.; DiCelma, C.; Bonaccorsi, E.; Urbina, M.; Bianucci, G. Inside baleen: Exceptional microstructure preservation in a late Miocene whale skeleton from Peru. Geology 2016, 44, 839–842. [Google Scholar] [CrossRef]
- Brand, L.; Urbina, M.; Chadwick, A.; DeVries, T.J.; Esperante, R. A high resolution stratigraphic framework for the remarkable fossil cetacean assemblage of the Miocene/Pliocene Pisco Formation, Peru. J. S. Am. Earth Sci. 2011, 31, 414–425. [Google Scholar] [CrossRef]
- Marino, L.; Uhen, M.D.; Pyenson, N.D.; Frohlich, B. Reconstructing cetacean brain evolution using computed tomography. Anat. Rec. 2003, 272B, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Buchholtz, E.A. Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). J. Zool. 2001, 253, 175–190. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.M.; Sohn, S.; Cho, Y.; Choi, Y.M.; Kim, H.K.; Kim, J.H.; Jeong, D.G. Complete mitochondrial genome of the Pacific white-sided dolphin Lagenorhynchus obliquidens (Cetacea: Delphinidae). Conserv. Gen. Res. 2018, 10, 201–204. [Google Scholar] [CrossRef]
- Rooney, A.; Honeycutt, R.; Davis, S.; Derr, J.N. Evaluating a putative bottleneck in a population of bowhead whales from patterns of microsatellite diversity and genetic disequilibria. J. Mol. Evol. 1999, 49, 682–690. [Google Scholar] [CrossRef]
- Amendola-Pimenta, M.; Camelo-Marrufo, M.; Zamora-Briseno, J.A.; Hernandez-Velazques, I.M.; Zamora-Bustillos, R.; Rodrigues-Canul, R. Genetic bottleneck and founder effect signatures in a captive population of common bottlenose dolphins Tursiops truncatus (Montagu 1821) in Mexico. PeerJ 2018, 6, e26891v1. [Google Scholar]
- Gaspari, S.; Airoldi, S.; Hoelzel, A.R. Risso’s dolphins (Grampus griseus) in UK waters are differentiated from a population in the Mediterranean Sea and genetically less diverse. Conserv. Gen. 2007, 8, 727–732. [Google Scholar] [CrossRef]
- McGowan, M.R.; Tsagkogeorga, G.; Alvarez-Carretero, S.; dos Reis, M.; Struebig, M.; Deaville, R.; Jepson, P.D.; Jarman, S.; Polanowski, A.; Morin, P.A. Phylogenomic resolution of the cetacean tree of life using target sequence capture. Syst. Biol. 2020, 69, 479–501. [Google Scholar] [CrossRef]
- Nery, M.F.; Gonzalez, D.J.; Opazo, J.C. How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome. PLoS ONE 2013, 8, e65491. [Google Scholar] [CrossRef] [Green Version]
- Yim, H.S.; Cho, Y.S.; Guang, X.; Kang, S.G.; Jeong, J.Y.; Cha, S.S.; Oh, H.M.; Lee, J.H.; Yang, E.C.; Kwon, K.K.; et al. Minke whale genome and aquatic adaptation in cetaceans. Nat. Gen. 2014, 46, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Goldbogen, J.A.; Madsen, P.T. The evolution of foraging capacity and gigantism in cetaceans. J. Exp. Biol. 2018, 221, e166033. [Google Scholar] [CrossRef] [Green Version]
- Fordyce, R.E.; Marx, F.G. Gigantism precedes filter feeding in baleen whale evolution. Curr. Biol. 2018, 28, 1670–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianucci, G.; Marx, F.G.; Collareta, A.; DiStefano, A.; Landini, W.; Morigi, C.; Varola, A. Rise of the titans: Baleen whales became giants earlier than thought. Biol. Lett. 2019, 15, e0175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, O.; Bianucci, G.; Post, K.; de Muizon, C.; Salas-Gismondi, R.; Urbina, M.; Reuner, J. The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 2010, 466, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, H. Cultural selection and genetic diversity in matrilineal whales. Science 1998, 28, 1708–1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.L.; Hao, Y.; Mei, Z.; Turvey, S.T.; Wang, D. Common pattern of population decline for freshwater cetacean species in deteriorating habitats. Freshw. Biol. 2012, 57, 1266–1276. [Google Scholar] [CrossRef]
- Gol’din, P. Naming an innominate: Pelvis and hindlimbs of Miocene whales give and insight into evolution and homology of cetacean pelvic girdle. Evol. Biol. 2017, 41, 473–479. [Google Scholar] [CrossRef]
- Peredo, C.M.; Pyenson, N.D.; Uhen, M.D.; Marshall, C.D. Alveoli, teeth, and tooth loss: Understanding the homology of internal mandibular structures in mysticete cetaceans. PLoS ONE 2017, 12, e0178243. [Google Scholar] [CrossRef]
- Fraija-Fernandez, N.; Olson, P.D.; Crespo, E.A.; Raga, J.A.; Aznar, F.J.; Fernandez, M. Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA. Int. J. Parasitol. 2015, 45, 167–173. [Google Scholar] [CrossRef]
- Marx, F.G.; Uhen, M.D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 2010, 327, 993–996. [Google Scholar] [CrossRef] [Green Version]
- Simões-Lopes, P.C.; Daura-Jorge, F.G.; Cantor, M. Clues of cultural transmission in cooperative foraging between artisanal fishermen and bottlenose dolphins, Tursiops truncatus (Cetacea: Delphinidae). Zool. Curitiba 2016, 33. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.; Hanazaki, N.; Simões-Lopes, P.C. Natural resource appropriation in cooperative artisanal fishing between fishermen and dolphins (Tursiops truncatus) in Laguna, Brazil. Ocean Coast. Manag. 2008, 51, 469–475. [Google Scholar] [CrossRef]
- Crossman, C.A.; Taylor, E.B.; Barrett-Lennard, L.G. Hybridization in the Cetacea: Widespread occurrence and associated morphological, behavioral, and ecological factors. Ecol. Evol. 2016, 6, 1293–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bressem, M.F.; Raga, J.A.; DiGuardo, G.; Jepson, P.D.; Duignan, P.J.; Siebert, U.; Barrett, T.; Santos, M.C.O.; Moreno, I.B.; Siciliano, S.; et al. Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Dis. Aquat. Org. 2009, 86, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C.R. On the Origin of Species; John Murray: London, UK, 1859. [Google Scholar]
- Gillet, A.; Frederich, B.; Parmentier, E. Divergent evolutionary morphology of the axial skeleton as a potential key innovation in modern cetaceans. Proc. R. Soc. B 2019, 286, e20191771. [Google Scholar] [CrossRef] [PubMed]
- Estes, J.A.; Tinker, M.T.; Williams, T.M.; Doak, D.F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 1998, 285, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Parsons, K.M.; Durban, J.W.; Claridge, D.E.; Balcomb, K.C.; Noble, L.R.; Thompson, P.M. Kinship as a basis for alliance formation between male bottlenose dolphins, Tursiops truncatus, in the Bahamas. Anim. Behav. 2003, 66, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.L.; Ni, I.H.; Chou, L.S. Correlations in cetacean life history traits. Raffles Bull. Zool. 2008, 19, 285–292. [Google Scholar]
- Marx, F.G.; Fordyce, R.E. A link no longer missing: New evidence for the cetotheriid affinity for Caperea. PLoS ONE 2016, 11, e0164059. [Google Scholar] [CrossRef]
- Boessenecker, R.W. Pleistocene survival of an archaic dwarf baleen whale (Mysticeti: Cetotheriidae). Naturwissenschaften 2013, 100, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Perrin, W.M.; Mesnick, S.L. Sexual ecology of the spinner dolphin, Stenella longirostris: Geographic variation in mating system. Mar. Mamm. Sci. 2003, 19, 462–483. [Google Scholar] [CrossRef]
- Schaeff, C.M. Courtship and mating behavior. In Reproductive Biology and Phylogeny of Cetacea; Miller, D.L., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 349–370. [Google Scholar]
- Hershkovitz, P. Catalogue of Living Whales; Smithsonian: Washington, DC, USA, 1966. [Google Scholar]
- Corkeron, P.J.; Connor, R.C. Why do baleen whales migrate? Mar. Mamm. Sci. 2006, 15, 1228–1245. [Google Scholar] [CrossRef]
- Churchill, M.; Miguel, J.; Beatty, B.L.; Gowami, A.; Geisler, J.H. Asymmetry drives modularity of the skull in the common dolphin (Delphinus delphis). Biol. J. Linn. Soc. 2018, 126, 225–239. [Google Scholar] [CrossRef]
- Jackson, J.A.; Baker, C.S.; Vant, M.; Steel, D.J.; Medrano-Gonzalez, L.; Palumbi, S.R. Big and slow: Phylogenetic estimates of molecular evolution in baleen whales (Suborder Mysticeti). Mol. Biol. Evol. 2009, 26, 2427–2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milinkovitch, M.C.; Mayer, A.; Powell, J.R. Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes. Mol. Biol. Evol. 1994, 11, 939–948. [Google Scholar] [PubMed] [Green Version]
- Theodor, J.M. Molecular clock divergence estimates and the fossil record of Cetartiodactyla. J. Paleont 2004, 78, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Naylor, G.J.P.; Adams, D.C. Are the fossil data really at odds with the molecular data? Morphological evidence for Cetartiodactyl phylogeny reexamined. Syst. Biol. 2001, 50, 444–453. [Google Scholar]
- Messenger, S.L.; McGuire, J.A. Morphology, molecules, and the phylogenetics of cetaceans. Syst. Biol. 1998, 47, 90–124. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.R.; Coelho, M.M.; Marugan-Lobon, J.; Rohlf, F.J. Cranial shape differentiation in three closely related delphinid cetacean species: Insights into evolutionary history. Zoology 2009, 112, 38–47. [Google Scholar] [CrossRef]
- Falk, D.; Dudek, B. Mosaic evolution of the neocortex. Behav. Brain Sci. 1993, 16, 701–702. [Google Scholar] [CrossRef]
- Zhu, K.; Zhou, X.; Xu, S.; Sun, D.; Ren, W.; Zhou, K.; Yang, G. The loss of taste genes in cetaceans. BMC Evol. Biol. 2014, 14, e218. [Google Scholar] [CrossRef] [Green Version]
- Huelsmann, M.; Hecker, N.; Springer, M.S.; Gatesy, J.; Sharma, V.; Hiller, M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. Sci. Adv. 2019, 5, e6671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Wang, Z.; Xu, S.; Zhou, K.; Yang, G. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans. BMC Evol. Biol. 2013, 13, e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katona, S.; Whitehead, H. Are Cetacea ecologically important? Oceanogr. Mar. Biol. Ann. Rev. 1988, 26, 553–568. [Google Scholar]
- Trull, P. Symbiotic Relationship between Humpback Whales and Marine Birds. Orleans Conservation Trust. Available online: https://orleansconservationtrust.org/symbiotic-relationship-between-humpback-whales-and-marine-birds-presentation-recap/ (accessed on 1 April 2020).
- Tsai, C.H.; Fordyce, R.E. Juvenile morphology in baleen whale phylogeny. Naturwissenschaften 2014, 101, 765–769. [Google Scholar] [CrossRef]
- Galatius, A. Paedomorphosis in two small species of toothed whales (Odontoceti): How and why? Biol. J. Linn. Soc. 2010, 99, 278–295. [Google Scholar] [CrossRef] [Green Version]
- Waples, R.S. Genetic methods for estimating the effective size of cetacean populations. Rep. Int. Whal. Comm. 1991, 13, 279–300. [Google Scholar]
- Friedlaender, A.; Lawon, G.L.; Halpin, P.N. Evidence of resource partitioning between humpback and minke whales around the western Antarctic Peninsula. Mar. Mamm. Sci. 2009, 25, 402–415. [Google Scholar] [CrossRef] [Green Version]
- Erwin, D.H. Macroevolution: Dynamics of diversity. Curr. Biol. 2011, 21, R1000–R1001. [Google Scholar] [CrossRef] [Green Version]
- Milinkovitch, M.C.; Berube, M.; Palsboll, P.J. Cetaceans are highly derived artiodactyls. In The Emergence of Whales; Thewissen, J.G.M., Ed.; Plenum: New York, NY, USA, 1998; pp. 113–131. [Google Scholar]
- Santos, M.; Rosso, S. Ecological aspects of marine tucuxi dolphins (Sotalia guianensis) based on group size and composition in the Cananéia Estuary, southeastern Brazil. Lat. Am. J. Aquat. Mamm. 2007, 6, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Collareta, A.; Lambert, O.; Landini, W.; DiCelma, C.; Malinverno, E.; Varas-Malca, R.; Urbina, M.; Bianucci, G. Did the giant extinct shark Carcharocles megalodon target small prey? Bite marks on marine mammal remains from the late Miocene of Peru. Paleogeog. Paleoclimatol. Paleoecol. 2017, 469, 84–91. [Google Scholar] [CrossRef]
- Yablokov, A.V. Convergence or parallelism in the evolution of cetaceans. Int. Geol. Rev. 1965, 7, 1461–1468. [Google Scholar] [CrossRef]
- Perrin, W.F.; Rosel, P.E.; Cipriano, F. How to contend with paraphyly in the taxonomy of delphinine cetaceans? Mar. Mamm. Sci. 2013, 29, 567–588. [Google Scholar] [CrossRef]
- Arvy, L. Phoresies and parasitism in cetaceans: A review. Invest Cetacea 1982, 14, 233–335. [Google Scholar]
- Paulos, R.D.; Trone, M.; Kuczaj, S.A. Play in wild and captive cetaceans. Int. J. Comp. Psychol. 2010, 23, 701–722. [Google Scholar]
- Wang, J.Y.; Liao, W.B. Ontogenesis and evolutionary allometry shape divergent evolution of genitalia in female cetaceans. Evolution 2018, 72, 404–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loch, C.; Duncan, W.; Simões-Lopes, P.C.; Kieser, J.A.; Fordyce, R.E. Ultrastructure of enamel and dentine in extant dolphins (Cetacea: Delphinoidea and Inioidea). Zoomorphology 2013, 132, 215–225. [Google Scholar] [CrossRef]
- Cooper, L.N.; Berta, A.; Dawson, S.D.; Reidenberg, J.S. Evolution of hyperphalangy and digit reduction in the cetacean manus. Anat. Rec. 2007, 290, 654–672. [Google Scholar] [CrossRef]
- Cercio, S.; Jacobsen, J.K.; Cholewiak, D.M.; Falcone, E.A.; Merriwether, D.A. Paternity in humpback whales, Megaptera novaeangliae: Assessing polygyny and skew in male reproductive success. Anim. Behav. 2005, 70, 267–277. [Google Scholar] [CrossRef]
- Vachon, F.; Whitehead, H.; Frasier, T.R. What factors shape genetic diversity in cetaceans? Ecol. Evol. 2018, 8, 1554–1572. [Google Scholar] [CrossRef] [Green Version]
- Hoelzel, A.R.; Hancock, J.M.; Dover, G.A. Evolution of the cetacean mitochondrial D-loop region. Mol. Biol. Evol. 1991, 8, 475–493. [Google Scholar]
- Pagan, H.J.T.; Ferrer, T.; O’Corry-Crowe, G. Positive selection in coding regions and motif duplication in regulatory regions of bottlenose dolphin MHC class II genes. PLoS ONE 2018, 13, e0203450. [Google Scholar] [CrossRef] [PubMed]
- Kerem, D.; Goffman, O.; Elasar, M.; Hadar, N.; Scheinin, A.; Lewis, T. The rough-toothed dolphin, Steno bredanensis, in the Eastern Mediterranean Sea: A relict population? Adv. Mar. Biol. 2016, 75, 233–258. [Google Scholar] [PubMed]
- Riesch, R.; Barrett-Lennard, L.G.; Ellis, G.M.; Ford, J.K.B.; Deecke, V.B. Cultural traditions and the evolution of reproductive isolation: Ecological speciation in killer whales? Biol. J. Linn. Soc. 2012, 106, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Marsh, H.; Kasuya, T. 1986 Evidence for reproductive senescence in female cetaceans. Rep. Int. Whal. Comm. 1986, 8, 57–73. [Google Scholar]
- Ellis, S.; Franks, D.W.; Nattrass, S.; Currie, T.E.; Cant, M.A.; Giles, D.; Balcomb, K.C.; Croft, D.P. Analyses of ovarian activity reveal repeated evolution of post-reproductive lifespans in toothed whales. Sci. Rep. 2018, 8, e12833. [Google Scholar] [CrossRef] [PubMed]
- Ansmann, I.C.; Lanyon, J.M.; Seddon, J.M.; Parra, G.J. Habitat and resource partitioning among Indo-Pacific bottlenose dolphins in Moreton Bay, Australia. Mar. Mamm. Sci. 2015, 31, 211–230. [Google Scholar] [CrossRef]
- Pyenson, N.D.; Goldbogen, J.A.; Shadwick, R.E. Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): The largest vertebrate skeletal element and its role in rorqual lunge feeding. Biol. J. Linn. Soc. 2013, 108, 586–599. [Google Scholar] [CrossRef] [Green Version]
- Alexander, A.; Steel, D.; Slikas, B.; Hoekzema, K.; Carraher, C.; Parks, M.; Cronn, R.; Baker, C.S. Low diversity in the mitogenome of sperm whales revealed by next generation sequencing. Genome Biol. Evol. 2013, 5, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Karczmarki, L.; Lin, W.; Chan, S.C.Y.; Chang, W.L.; Wu, Y. Infanticide in the Indo-Pacific humpback dolphin (Sousa chinensis). J. Ethol. 2016, 34, 299–307. [Google Scholar] [CrossRef]
- Dalebout, M.L.; Steel, D.; Baker, C.S. Phylogeny of the beaked whale genus Mesoplodon (Ziphiidae: Cetacea) revealed by nuclear introns: Implications for the evolution of male tusks. Syst. Biol. 2008, 57, 857–875. [Google Scholar] [CrossRef] [Green Version]
- Borrell, A.; Velásquez Vacca, A.; Pinela, A.M.; Kinze, C.; Lockyer, C.H.; Vighi, M.; Aguilar, A. Stable isotopes provide insight into population structure and segregation in Eastern North Atlantic sperm whales. PLoS ONE 2013, 8, e82398. [Google Scholar] [CrossRef] [PubMed]
- Clementz, M.T.; Fordyce, R.E.; Peek, S.L.; Fox, D.L. Ancient marine isoscapes and isotopic evidence of bulk-feeding by Oligocene cetaceans. Paleogeogr. Paleoclimatol. Paleoecol. 2014, 400, 28–40. [Google Scholar] [CrossRef]
- Perrin, W.F.; Mead, J.G.; Brownell, R.L. Review of the Evidence Used in the Description of Currently Recognized Cetacean Subspecies. 2009. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1115&context=usdeptcommercepub (accessed on 21 May 2020).
- Yang, G.; Liu, S.; Ren, W.; Zhou, K.; Wei, F. Mitochondrial control region variability of baiji and the Yangtze finless porpoises, two sympatric small cetaceans in the Yangtze river. Acta Theriol. 2003, 48, 469–483. [Google Scholar] [CrossRef]
- Hoelzel, A.R. Genetic structure of cetacean populations in sympatry, parapatry, and mixed assemblages: Implications for conservation policy. J. Hered. 1998, 89, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Boessenecker, R.W.; Perry, F.A.; Schmitt, J.G. Comparative taphonomy, taphofacies, and bonebeds of the Mio-Pliocene Purisima Formation, Central California: Strong physical control on marine vertebrate preservation in shallow marine settings. PLoS ONE 2014, 9, e91419. [Google Scholar] [CrossRef] [PubMed]
- Bianucci, G.; Collareta, A.; Bosio, G.; Landini, W.; Gariboldi, K.; Gioncada, A.; Lambert, O.; Malinverno, E.; de Muizon, C.; Varas-Malca, R.; et al. Taphonomy and palaeoecology of the lower Miocene marine vertebrate assemblage of Ullujaya (Chilcatay Formation, East Pisco Basin, southern Peru). Paleogeogr. Paleoclimatol. Paleoecol. 2018, 511, 256–279. [Google Scholar] [CrossRef]
- Esperante, R.; Brand, L.; Chadwick, A.; Poma, O. Taphonomy of fossil whales in the diatomaceous sediments of the Miocene/Pliocene Pisco Formation, Peru. Curr. Top. Taph. Fossil. 2002, 337–344. [Google Scholar]
- Krutzen, M.; Mann, J.; Heithaus, M.R.; Connor, R.C.; Bajder, L.; Sherwin, W.B. Cultural transmission of tool use in bottlenose dolphins. Proc. Natl. Acad. Sci. USA 2005, 102, 8939–8943. [Google Scholar] [CrossRef] [Green Version]
- Baum, J.K.; Worm, B. Cascading top-down effects of changing ocean predator abundances. J. Anim. Ecol. 2009, 78, 699–714. [Google Scholar] [CrossRef]
- Lynam, C.P.; Llope, M.; Mollman, C.; Helaouet, P.; Bayliss-Brown, G.A.; Stenseth, N.C. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. USA 2017, 114, 1952–1957. [Google Scholar] [CrossRef] [Green Version]
- Ainley, D.; Ballard, G.; Blight, L.K.; Ackley, S.; Emslie, S.D.; Lescroel, A.; Olmastroni, S.; Townsend, S.E.; Tynan, C.T.; Wilson, P.; et al. Impacts of cetaceans on the structure of Southern Ocean food webs. Mar. Mamm. Sci. 2010, 26, 482–498. [Google Scholar] [CrossRef]
- Braulik, G.; Barnett, R.; Odon, V.; Islas-Villaneuva, V.; Hoelzel, R.; Graves, J.A. One species or two? Vicariance, lineage divergence, and low mtDNA diversity in geographically isolated populations of South Asian river dolphin. J. Mamm. Evol. 2014, 22, 111–120. [Google Scholar] [CrossRef]
- Bisconti, M. Anatomy of a new cetotheriid genus and species from the Miocene of Herentals, Belgium, and the phylogenetic and palaeobiogeographical relationships of Cetotheriidae s.s. (Mammalia, Cetacea, Mysticeti). J. Syst. Palaeont. 2015, 13, 377–395. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werth, A.J. Cetaceans as Exemplars of Evolution and Evolutionary Ecology: A Glossary. Oceans 2020, 1, 56-76. https://doi.org/10.3390/oceans1020006
Werth AJ. Cetaceans as Exemplars of Evolution and Evolutionary Ecology: A Glossary. Oceans. 2020; 1(2):56-76. https://doi.org/10.3390/oceans1020006
Chicago/Turabian StyleWerth, Alexander J. 2020. "Cetaceans as Exemplars of Evolution and Evolutionary Ecology: A Glossary" Oceans 1, no. 2: 56-76. https://doi.org/10.3390/oceans1020006
APA StyleWerth, A. J. (2020). Cetaceans as Exemplars of Evolution and Evolutionary Ecology: A Glossary. Oceans, 1(2), 56-76. https://doi.org/10.3390/oceans1020006