Influence of Dark Aging on the Mechanical Properties of Zirconium Silicate Nanoparticle-Reinforced Maxillofacial Silicone Prostheses
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Zirconium-Silicate-Reinforced Silicone Nanocomposite
- Weighing and initial blending: The zirconium silicate nanofiller was accurately weighed (1.5 wt.% relative to the silicone base) using a precision analytical balance (Nimbus Analytical, Adam Equipment, Oxford, CT, USA; accuracy 0.0001 g) and transferred into the bowl of a vacuum mixer (Model AX-2000, Aixin Medical Equipment Co., Ltd., Tianjin, China). The silicone base (Part A) was weighed separately using a digital electronic scale and added over the nanofiller. The components were manually blended with a clean spatula for one minute.
- Mechanical mixing: The blend of silicone base and zirconium silicate nanofiller was homogenized in a vacuum mixer at a speed of 360 rpm for ten minutes. During the initial three minutes, mixing was carried out without vacuum, followed by seven minutes under a vacuum pressure of −0.09 bar. Subsequently, the catalyst (Part B) was incorporated into the mixture and mixed under vacuum for five minutes. To eliminate entrapped air bubbles, the mixture was placed in a vacuum chamber for fifteen minutes and maintained for three more minutes without vacuum to allow material settlement.
- Molding and curing: The prepared silicone mixture was poured into prefabricated acrylic molds, which were secured with G-clamps to permit the escape of excess material. Curing was performed at room temperature for 24 h. Following polymerization, specimens were carefully removed from the molds, cleaned, and stored under controlled laboratory conditions until testing conditions (room temperature 23 ± 2 °C, relative humidity 50 ± 5%).
2.2.2. Specimen Storage
- Baseline group: Specimens were conditioned for a minimum of 16 h after curing and tested after 24 h in accordance with ISO 37:2017 and ISO 20795-1:2013 standards [38,39]. During this period, they were stored in hermetically sealed, light-resistant containers under controlled laboratory conditions (room temperature 23 ± 2 °C, relative humidity 50 ± 5%) [31].
- Dark-storage group: Specimens were stored for two years (from 2021 to 2023) in sealed, pigment-free polyethylene bags maintained at room temperature (23 ± 2 °C) and relative humidity (50 ± 5%). The containers were placed inside a lightproof wooden box to prevent light exposure. At the end of the storage period, specimens were retrieved and subjected to testing [40].
2.2.3. Mechanical Testing
Tensile Strength
Elongation at Break
Tear Strength

Hardness
2.3. Statistical Analysis
3. Results
3.1. FTIR Characterization
3.2. Mechanical Test Results
4. Discussion
5. Conclusions
- Although zirconium silicate nanoparticles enhanced the baseline properties of maxillofacial silicone, they did not entirely prevent aging-related deterioration. After two years of dark storage, significant reductions occurred in tensile strength and elongation at break, indicating susceptibility of these properties to long-term degradation.
- Tear strength and hardness showed no statistically significant changes after aging, suggesting that these characteristics are less sensitive to dark storage conditions.
- The observed mechanical changes can be attributed to the combined effects of cross-linking and chain scission within the polymer network, along with possible nanoparticle agglomeration and restricted chain mobility.
- The limited long-term durability observed highlights the need to optimize filler concentration, improve nanoparticle dispersion, and evaluate performance under clinically relevant conditions to achieve more reliable prostheses.
- Dark aging provides a realistic model of storage conditions, capturing the gradual changes that occur in silicone prostheses and offering a practical method to evaluate long-term material stability during typical service life.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ASTM | American Society for Testing and Materials (an international standards organization) |
| bar | Pressure unit |
| BaSO4 | barium sulfate |
| CI | confidence interval |
| cm−1 | Reciprocal centimeter (number of wave cycles per centimeter) |
| CNC | computer numerical control |
| d | specimen thickness |
| F | maximum force at rupture |
| FTIR | Fourier-transform infrared spectroscopy |
| g | Gram |
| g/mol | Gram per mole (Molarity unit) |
| h | Hour(s) |
| ISO | International Organization for Standardization |
| KN | Kilonewton |
| Lb | gauge length at rupture |
| Lo | initial gauge length |
| Mac. | Machine |
| min | Minute(s) |
| mm | Millimeter |
| MPa | Megapascal |
| N | Newton |
| n | Number |
| p | p-value (the calculated probability) |
| PDMS | polydimethylsiloxane |
| PMMA | Polymethyl Methacrylate |
| PVC | poly(vinyl chloride) |
| QOL | quality of life |
| rpm | Revolutions per minute |
| RTV | Room-Temperature-Vulcanizing Silicone |
| SD | Standard Deviation |
| SE | Standard Error |
| SPSS | Statistical Package for Social Sciences |
| t | t-statistic |
| T | Thickness |
| TiO2 | titanium dioxide |
| Ts | tensile strength |
| UTM | Universal Testing Machine |
| UV | Ultraviolet radiation |
| W | Width |
| wt% | Weight Percentage |
| ZnO | zinc oxide |
| ZrO2 NPs | zirconia nanoparticles |
| ZrSiO4 | zirconium silicate |
| % | Percent |
| °C | Degree Celsius |
| < | Less than |
| = | Equals |
| ± | The range around a value |
References
- Goiato, M.C.; Pesqueira, A.A.; Ramos da Silva, C.; Gennari Filho, H.; Micheline Dos Santos, D. Patient Satisfaction with Maxillofacial Prosthesis. Literature Review. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 175–180. [Google Scholar] [CrossRef]
- Kumar, S.; Rajtilak, G.; Rajasekar, V.; Kumar, M. Nasal Prosthesis for a Patient with Xeroderma Pigmentosum. J. Pharm. Bioallied Sci. 2013, 5, S176–S178. [Google Scholar] [CrossRef]
- Dings, J.P.J.; Merkx, M.A.W.; de Clonie Maclennan-Naphausen, M.T.P.; van de Pol, P.; Maal, T.J.J.; Meijer, G.J. Maxillofacial Prosthetic Rehabilitation: A Survey on the Quality of Life. J. Prosthet. Dent. 2018, 120, 780–786. [Google Scholar] [CrossRef]
- Aziz, T.; Waters, M.; Jagger, R. Analysis of the Properties of Silicone Rubber Maxillofacial Prosthetic Materials. J. Dent. 2003, 31, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Hatamleh, M.M.; Polyzois, G.L.; Nuseir, A.; Hatamleh, K.; Alnazzawi, A. Mechanical Properties and Simulated Aging of Silicone Maxillofacial Elastomers: Advancements in the Past 45 Years: Advancements in Maxillofacial Silicone Mechanical Properties. J. Prosthodont. 2016, 25, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Huber, H.; Studer, S.P. Materials and Techniques in Maxillofacial Prosthodontic Rehabilitation. Oral Maxillofac. Surg. Clin. N. Am. 2002, 14, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.F.; Goiato, M.C.; Dos Santos, D.M.; Pesqueira, A.A.; Moreno, A.; Pellizzer, E.P. Influence of Pigment and Opacifier on Dimensional Stability and Detail Reproduction of Maxillofacial Silicone Elastomer. J. Craniofac. Surg. 2011, 22, 1612–1616. [Google Scholar] [CrossRef]
- Bangera, B.S.; Guttal, S.S. Evaluation of Varying Concentrations of Nano-Oxides as Ultraviolet Protective Agents When Incorporated in Maxillofacial Silicones: An in Vitro Study. J. Prosthet. Dent. 2014, 112, 1567–1572. [Google Scholar] [CrossRef]
- Mancuso, D.N.; Goiato, M.C.; de Carvalho Dekon, S.F.; Gennari-Filho, H. Visual Evaluation of Color Stability after Accelerated Aging of Pigmented and Nonpigmented Silicones to Be Used in Facial Prostheses. Indian J. Dent. Res. 2009, 20, 77–80. [Google Scholar] [CrossRef]
- Gandhi, D.S.; Sethuraman, R. Comparative Evaluation of Tensile Strength, Tear Strength, Color Stability, and Hardness of Conventional and 1% Trisnorbornenylisobutyl Polyhedralsilsesquioxane Modified Room Temperature Vulcanizing Maxillofacial Silicone after a Six-Month Artificial Aging Period. J. Indian Prosthodont. Soc. 2022, 22, 328–337. [Google Scholar] [CrossRef]
- Gunay, Y.; Kurtoglu, C.; Atay, A.; Karayazgan, B.; Gurbuz, C.C. Effect of Tulle on the Mechanical Properties of a Maxillofacial Silicone Elastomer. Dent. Mater. J. 2008, 27, 775–779. [Google Scholar] [CrossRef]
- Montgomery, P.C.; Kiat-Amnuay, S. Survey of Currently Used Materials for Fabrication of Extraoral Maxillofacial Prostheses in North America, Europe, Asia, and Australia: Survey of Maxillofacial Prostheses Materials Used. J. Prosthodont. 2009, 19, 482–490. [Google Scholar] [CrossRef]
- Nobrega, A.S.; Andreotti, A.M.; Moreno, A.; Sinhoreti, M.A.C.; Dos Santos, D.M.; Goiato, M.C. Influence of Adding Nanoparticles on the Hardness, Tear Strength, and Permanent Deformation of Facial Silicone Subjected to Accelerated Aging. J. Prosthet. Dent. 2016, 116, 623–629.e1. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, R.A.; Moore, D.J.; Cruz, D.L.; Chappell, R. Comparison of the Physical Properties of Two Types of Polydimethyl Siloxane for Fabrication of Facial Prostheses. J. Prosthet. Dent. 1992, 67, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.H.; Wang, L.L.; Ko, C.C.; DeLong, R.L.; Hodges, J.S. New Organosilicon Maxillofacial Prosthetic Materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2002, 18, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Goiato, M.C.; Nobrega, A.S.; Freitas da Silva, E.V.; Micheline Dos Santos, D.; Pinheiro de Magalhães Bertoz, A.; Sonego, M.V.; Lamartine de Moraes Melo Neto, C. Tear Strength Analysis of MDX4-4210 and A-2186 Silicones with Different Intrinsic Pigments Incorporated by Mechanical and Industrial Methods. Int. J. Dent. 2019, 2019, 2573095. [Google Scholar] [CrossRef]
- Polyzois, G.L.; Eleni, P.N.; Krokida, M.K. Effect of Time Passage on Some Physical Properties of Silicone Maxillofacial Elastomers. J. Craniofac. Surg. 2011, 22, 1617–1621. [Google Scholar] [CrossRef]
- Ariani, N.; Visser, A.; Teulings, M.R.I.M.; Dijk, M.; Rahardjo, T.B.W.; Vissink, A.; Van Der Mei, H.C. Efficacy of Cleansing Agents in Killing Microorganisms in Mixed Species Biofilms Present on Silicone Facial Prostheses—An In Vitro Study. Clin. Oral Investig. 2015, 19, 2285–2293. [Google Scholar] [CrossRef]
- Goiato, M.C.; Pesqueira, A.A.; dos Santos, D.M.; Antenucci, R.M.F.; Ribeiro, P.d.P. Evaluation of Dimensional Change and Detail Reproduction in Silicones for Facial Prostheses. Acta Odontol. Latinoam. 2008, 21, 85–88. [Google Scholar]
- Eleni, P.N.; Katsavou, I.; Krokida, M.K.; Polyzois, G.L. Color Stability of Facial Silicon Prosthetic Elastomer after Artificial Weathering. Dent. Res. J. 2008, 5, 71–79. [Google Scholar]
- Nóbrega, A.S.; Neto, C.L.M.M.; Dos Santos, D.M.; Bertoz, A.P.M.; de MeloMoreno, A.L.; Goiato, M.C. Effect of Accelerated Aging on the Sorption and Solubility Percentages of Silicone Facial Prostheses. Eur. J. Dent. 2022, 116, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Chotprasert, N.; Shrestha, B.; Sipiyaruk, K. Effects of Disinfection Methods on the Color Stability of Precolored and Hand-Colored Maxillofacial Silicone: An In Vitro Study. Int. J. Biomater. 2022, 2022, 7744744. [Google Scholar] [CrossRef] [PubMed]
- Al-Kadi, F.K.; Abdulkareem, J.F.; Azhdar, B.A. Hybrid Chitosan-TiO2 Nanocomposite Impregnated in Type A-2186 Maxillofacial Silicone Subjected to Different Accelerated Aging Conditions: An Evaluation of Color Stability. Nanomaterials 2023, 13, 2379. [Google Scholar] [CrossRef]
- Alkahtany, M.; Beatty, M.W.; Alsalleeh, F.; Petro, T.M.; Simetich, B.; Zhou, Y.; Feely, D.; Polyzois, G. Color Stability, Physical Properties, and Antifungal Effects of ZrO2 Additions to Experimental Maxillofacial Silicones: Comparisons with TiO2. Prosthesis 2023, 5, 916–938. [Google Scholar] [CrossRef]
- Akay, C.; Cevik, P.; Karakis, D.; Sevim, H. In Vitro Cytotoxicity of Maxillofacial Silicone Elastomers: Effect of Nanoparticles. J. Prosthodont. 2018, 27, 584–587. [Google Scholar] [CrossRef]
- Saridag, S.; Tak, O.; Alniacik, G. Basic Properties and Types of Zirconia: An Overview. World J. Stomatol. 2013, 2, 40–47. [Google Scholar] [CrossRef]
- Balaji, S.; Mandal, B.K.; Ranjan, S.; Dasgupta, N.; Chidambaram, R. Nano-Zirconia—Evaluation of Its Antioxidant and Anticancer Activity. J. Photochem. Photobiol. B Biol. 2017, 170, 125–133. [Google Scholar] [CrossRef]
- Sonnahalli, N.K.; Chowdhary, R. Effect of Nanoparticles on Color Stability and Mechanical and Biological Properties of Maxillofacial Silicone Elastomer: A Systematic Review. J. Indian Prosthodont. Soc. 2020, 20, 244–254. [Google Scholar] [CrossRef]
- Goiato, M.C.; Haddad, M.F.; Sinhoreti, M.A.C.; dos Santos, D.M.; Pesqueira, A.A.; Moreno, A. Influence of Opacifiers on Dimensional Stability and Detail Reproduction of Maxillofacial Silicone Elastomer. Biomed. Eng. Online 2010, 9, 85. [Google Scholar] [CrossRef]
- Hussein, I.E.; Hasan, R.H. Effects of Nano Zirconium Oxide Addition on the Strength, Hardness, and Microstructure of Maxillofacial Silicone Material. Int. Med. J. 2021, 28 (Suppl. S1), 54–57. [Google Scholar]
- Hatamleh, M.M.; Polyzois, G.L.; Silikas, N.; Watts, D.C. Effect of Extraoral Aging Conditions on Mechanical Properties of Maxillofacial Silicone Elastomer. J. Prosthodont. 2011, 20, 439–446. [Google Scholar] [CrossRef]
- Nair, A.; Saratchandran, S. Comparative Evaluation of Colour Stability of Maxillofacial Silicones Following Accelerated Ageing Conditions. Face 2022, 3, 362–368. [Google Scholar] [CrossRef]
- Kiat-amnuay, S.; Mekayarajjananonth, T.; Powers, J.M.; Chambers, M.S.; Lemon, J.C. Interactions of Pigments and Opacifiers on Colour Stability of MDX4-4210/Type A Maxillofacial Elastomers Subjected to Artificial Ageing. J. Prosthet. Dent. 2006, 95, 249–257. [Google Scholar] [CrossRef]
- Radey, N.; Al Shimy, A.; Ahmed, D. Effect of Extraoral Aging Conditions on Mechanical Properties of Facial Silicone Elastomer Reinforced with Titanium Oxide Nanoparticles (In Vitro Study). Alex. Dent. J. 2020, 45, 29–36. [Google Scholar] [CrossRef]
- Gupta, P.; Deshpande, S.; Radke, U.; Ughade, S.; Sethuraman, R. The Color Stability of Maxillofacial Silicones: A Systematic Review and Meta-Analysis. J. Indian Prosthodont. Soc. 2021, 21, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Kareem, S.; Fatalla, A.; Moudhaffer, M.; Ali, M. Effects of Zirconium Silicate Nanofillers on Some Properties of Room-Vulcanized Maxillofacial Silicone Elastomers. Res. J. Pharm. Biol. Chem. Sci. 2018, 9, 1023–1031. [Google Scholar]
- Al-Kadi, F.K.; Abdulkareem, J.F.; Azhdar, B.A. Evaluation of the Mechanical and Physical Properties of Maxillofacial Silicone Type A-2186 Impregnated with a Hybrid Chitosan–TiO2 Nanocomposite Subjected to Different Accelerated Aging Conditions. Biomimetics 2023, 8, 539. [Google Scholar] [CrossRef]
- ISO 37:2017; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress–Strain Properties. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 20795-1:2013; Dentistry—Base Polymers—Part 1: Denture Base Polymers. International Organization for Standardization: Geneva, Switzerland, 2013.
- Çevik, P. Evaluation of Shore A hardness of maxillofacial silicones: The effect of dark storage and nanoparticles. Eur. Oral Res. 2018, 52, 99–104. [Google Scholar] [CrossRef]
- ISO 34-1; Rubber, Vulcanized or Thermoplastic—Determination of Tear Strength—Part 1. International Organization for Standardization: Geneva, Switzerland, 2010.
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2012. [CrossRef]
- Dahham, O.S.; Hamzah, R.; Noriman, N.Z.; Alakrach, A.M.; Idrus, S.Z.S.; Shayfull, Z.; Adam, T. The Influences of Zirconium Dioxide on ENR-25/ZrO2 Composites: FTIR and TGA Analysis. J. Phys. Conf. Ser. 2018, 1019, 012055. [Google Scholar] [CrossRef]
- Sun, H.; Song, J.; Qi, T. Separation of Zr and Si in Zirconium Silicate by Sodium Hydroxide Sub-Molten Salt. Metals 2024, 14, 630. [Google Scholar] [CrossRef]
- Tukmachi, M.S.; Safi, I.N.; Ali, M.M.M. Evaluation of Mechanical Properties and Cytotoxicity of Maxillofacial Silicone Material after Incorporation of Zirconia Nanopowder. Mater. Today Proc. 2021, 42, 2209–2217. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Chambers, M.S.; Powers, J.M.; Kiat-Amnuay, S. Effect of Opacifiers and UV Absorbers on Pigmented Maxillofacial Silicone Elastomer, Part 2: Mechanical Properties after Artificial Aging. J. Prosthet. Dent. 2013, 109, 402–410. [Google Scholar] [CrossRef]
- Eleni, P.N.; Krokida, M.K.; Polyzois, G.L. The Effect of Artificial Accelerated Weathering on the Mechanical Properties of Maxillofacial Polymers PDMS and CPE. Biomed. Mater. 2009, 4, 035001. [Google Scholar] [CrossRef]
- Rahman, A.M.; Jamayet, N.B.; Nizami, M.M.U.I.; Johari, Y.; Husein, A.; Alam, M.K. Effect of Tropical Outdoor Weathering on the Surface Roughness and Mechanical Properties of Maxillofacial Silicones. J. Prosthet. Dent. 2022, 127, 937–942. [Google Scholar] [CrossRef]
- Chang, H.; Wan, Z.; Chen, X.; Wan, J.; Luo, L.; Zhang, H.; Shu, S.; Tu, Z. Temperature and Humidity Effect on Aging of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cell Applications. Appl. Therm. Eng. 2016, 104, 472–478. [Google Scholar] [CrossRef]
- Mouzakis, D.E.; Kandilioti, G.; Elenis, A.; Gregoriou, V.G. Ultraviolet Radiation Induced Cold Chemi-Crystallization in Syndio-tactic Polypropylene Clay-Nanocomposites. J. Macromol. Sci. Part A 2006, 43, 259–267. [Google Scholar] [CrossRef]
- Willett, E.S.; Beatty, M.W. Outdoor Weathering of Facial Prosthetic Elastomers Differing in Durometer Hardness. J. Prosthet. Dent. 2015, 113, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, F.A.; Ayad, N.M.; Saber, M.A.; ArRejaie, A.S.; Morgano, S.M. Mechanical Behavior and Color Change of Facial Prosthetic Elastomers after Outdoor Weathering in a Hot and Humid Climate. J. Prosthet. Dent. 2015, 113, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Q.; Jing, D.; Zhou, S.; Shao, L. Biomechanical Properties of Nano-TiO2 Addition to a Medical Silicone Elastomer: The Effect of Artificial Aging. J. Dent. 2014, 42, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Azeez, Z.; Tukmachi, M.; Mohammed, D.H. Effect of Silver-Zinc Zeolite Addition on Mechanical Properties of Maxillofacial Silicone. Int. J. Med. Res. Health Sci. 2018, 7, 19–29. [Google Scholar]
- Andreopoulos, A.G.; Evangelatou, M. Evaluation of Various Reinforcements for Maxillofacial Silicone Elastomers. J. Biomater. Appl. 1994, 8, 344–360. [Google Scholar] [CrossRef] [PubMed]
- Haug, S.P.; Moore, B.K.; Andres, C.J. Colour Stability and Colourant Effect on Maxillofacial Elastomers. Part II: Weathering Effect on Physical Properties. J. Prosthet. Dent. 1999, 81, 423–430. [Google Scholar] [CrossRef] [PubMed]






| Mechanical Tests | Baseline (24 h) Mean ± SD | Dark Storage (2 Years) Mean ± SD |
|---|---|---|
| Tensile Strength (MPa) | 6.63 ± 0.26 | 4.24 ± 0.20 |
| Elongation (%) | 1425.95 ± 61.78 | 1050.44 ± 58.22 |
| Tear Strength (N/mm) | 23.44 ± 0.38 | 22.60 ± 1.04 |
| Hardness (Shore A) | 34.80 ± 0.84 | 34.00 ± 1.58 |
| Mechanical Test | Mean Difference | t (8) | p-Value | Effect Size (Cohen’s d) | 95% CI of Mean Difference | Interpretation |
|---|---|---|---|---|---|---|
| Tensile Strength (MPa) | 2.39 | 12.73 | <0.001 | 5.69 (very large) | [1.87, 2.91] | Significant decrease |
| Elongation (%) | 375.51 | 8.81 | 0.001 | 3.94 (very large) | [257.14, 493.88] | Significant decrease |
| Tear Strength (N/mm) | 0.84 | 1.42 | 0.228 | 0.64 (medium) | [−0.80, 2.48] | Not significant |
| Hardness (Shore A) | 0.80 | 0.78 | 0.477 | 0.35 (small) | [−2.03, 3.63] | Not significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmael, S.K.; Al-Kadi, F.K.; Abdulkareem, J.F.; Mahmood, M.A. Influence of Dark Aging on the Mechanical Properties of Zirconium Silicate Nanoparticle-Reinforced Maxillofacial Silicone Prostheses. Prosthesis 2025, 7, 149. https://doi.org/10.3390/prosthesis7060149
Esmael SK, Al-Kadi FK, Abdulkareem JF, Mahmood MA. Influence of Dark Aging on the Mechanical Properties of Zirconium Silicate Nanoparticle-Reinforced Maxillofacial Silicone Prostheses. Prosthesis. 2025; 7(6):149. https://doi.org/10.3390/prosthesis7060149
Chicago/Turabian StyleEsmael, Saja Kareem, Faten Khalid Al-Kadi, Jwan Fateh Abdulkareem, and Mohammed Abdalla Mahmood. 2025. "Influence of Dark Aging on the Mechanical Properties of Zirconium Silicate Nanoparticle-Reinforced Maxillofacial Silicone Prostheses" Prosthesis 7, no. 6: 149. https://doi.org/10.3390/prosthesis7060149
APA StyleEsmael, S. K., Al-Kadi, F. K., Abdulkareem, J. F., & Mahmood, M. A. (2025). Influence of Dark Aging on the Mechanical Properties of Zirconium Silicate Nanoparticle-Reinforced Maxillofacial Silicone Prostheses. Prosthesis, 7(6), 149. https://doi.org/10.3390/prosthesis7060149

