Marginal Gap Measurement of Pre-Cemented Metal–Ceramic Crowns: A Systematic Review
Abstract
1. Introduction
Study Rationale
2. Materials and Methods
- In vitro studies evaluating marginal gaps of complete-coverage, single, pre-cemented metal–ceramic crowns.
- A clear description of the method used for measuring marginal gaps.
- Crowns constructed from base metals, gold alloys, noble alloys, stainless steel, or novel porcelain-fused-to-metal materials, using digital or conventional fabrication methods.
- Original research articles with cross-sectional or longitudinal experimental designs.
- In vivo studies, ceramic crowns, or virtual designs without physical crown components.
- Studies focusing exclusively on porcelain-bonded-to-zirconia, full-contour zirconia, or other non-metal–ceramic crowns.
- Studies measuring only post-cementation gaps, using tactile/visual assessments, or assessing only internal fit without marginal gap measurement.
- Research involving partial crowns (e.g., inlays, onlays), bridges, one-piece endodontic crowns, or ceramic layering/glazing without pre-cementation marginal gap measurement.
2.1. Databases
2.2. Search Strategy
2.3. Data Recorded
2.4. Statistical Analysis
3. Results
Author, Year | Number of Metal Ceramic Crowns Fabricated | Core Material(s) | Method of Crown Construction | Cement Space Thickness (in µm) | Underlying Crown Preparation Material | Tooth Form Measured | Instrument Used for Measurement | Number of Marginal Gap Measurements per Crown | Mean Range of Reported Marginal Gap Measurements (in µm) in Any Direction | Mean Marginal Gap of Metal–Ceramic Crowns (in µm, Rounded to Nearest Whole Number) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Giti, 2023 [38] | 20 | Ni-Cr alloy (N = 10) Co-Cr alloy (N = 10) | CAD-CAM Investment casting | 40 | Brass die | Premolar | Direct view microscopy | 16 | Cast metal ceramic crowns | 113.8 to 114.1 | 94 |
CAD-CAM based metal ceramic crowns | 74.0 to 75.2 | ||||||||||
Heboyan, 2022 [39] | 90 | Co-Cr alloy | CAD-CAM Investment casting | 50 | Plastic teeth | Unspecified | Direct view microscopy | 4 | Cast Co-Cr crowns | 53.7 to 55.5 | 56 |
CAD-CAM based Co-Cr crowns | 55.8 to 57.7 | ||||||||||
Kunz, 2022 [40] | 20 | Co-Cr alloy | CAD-CAM Investment casting | Unspecified | Acrylic die | Mandibular molar | Replica technique | 4 | Cast Co-Cr crown | 100.2 to 104.5 | 108 |
CAD-CAM based Co-Cr crown | 98.0 to 127.7 | ||||||||||
Tekin, 2020 [45] | 10 | Ni-Cr alloy | Investment casting | 20 | Plastic teeth | Mandibular molar | Replica technique | 4 | Cast Ni-Cr crowns | 64.6 to 86 | 75 |
Ortega, 2017 [41] | 10 | Co-Cr alloy | Investment casting | 50 | Stainless steel die | Premolar | Scanning electron microscopy | 60 | Cast Co-Cr crowns | 66.3 to 135.1 | 101 |
Saraswathi, 2016 [42] | 10 | Co-Cr alloy | CAD-CAM | Unspecified | Zirconia die | Maxillary molar | Direct view microscopy | 60 | Cast Co-Cr crowns | 91.2 to 137.7 | 114 |
Gómez-Cogolludo, 2013 [46] | 70 | Noble metal alloy (N = 20) Ni-Cr-Ti alloy (N = 20) Ni-Cr alloy (N = 20) Ti alloy (N = 10) | Investment casting | Unspecified | Stainless steel die | Premolar | Direct view microscopy | 120 | Pd-Au alloy crowns | 17.6 to 36.0 | 45 |
Ni-Cr-Ti alloy crowns | 42.5 to 48.0 | ||||||||||
Ni-Cr alloy crowns | 60.4 to 72.9 | ||||||||||
Ti alloy crowns | 39.0 to 71.2 | ||||||||||
Kim, 2013 [43] | 20 | Co-Cr alloy | CAD-CAM Investment casting | 30 | Titanium die | Maxillary molar | Replica technique and 3D superimposition | 16 | Cast Co-Cr crowns | 81.2 to 100.6 | 108 |
CAD-CAM based Co-Cr crowns | 100.5 to 114.7 | ||||||||||
Limkang-walmongkol, 2007 [49] | 32 | Noble metal alloy | Investment casting | Unspecified | Extracted teeth | Premolar | Profilometry | 6 | Porcelain margins of metal ceramic crowns | 27.9 | 35 |
Metal margin of metal ceramic crowns | 42.4 | ||||||||||
Tao, 2006 [44] | 30 | Au-Ti alloy (N = 15) Co-Cr alloy (N = 15) | Investment casting | Unspecified | Plastic teeth | Maxillary incisor | Direct view microscopy | 4 | Au-Ti alloy crowns | 20 to 45 | 32 |
Co-Cr alloy crowns | 19 to 45 | ||||||||||
Nakamura, 1998 [50] | 36 | Noble metal alloy | Investment casting | 100 | Metal die | Unspecified | Direct view microscopy | 12 | Crowns with normal margins | 19 to 39 | 29 |
Crowns with 1.5 mm overextended margins | 38 to 73 | ||||||||||
Crowns with 3 mm overextended margins | 51 to 175 | ||||||||||
Leong, 1994 [47] | 18 | Noble metal alloy (N = 6) Cast titanium (N = 6) Pure titanium (N = 6) | Conventional milling Investment casting | Unspecified | Plastic teeth | Premolar | Direct view microscopy | 4 | Pd-Cu-Ga alloy crowns | 10 to 36 | 46 |
Cast titanium alloy crowns | 50 to 71 | ||||||||||
Crowns with milled pure titanium | 28 to 87 | ||||||||||
Chan, 1989 [48] | 6 | Noble metal alloy | Investment casting | Unspecified | Extracted teeth | Unspecified | Scanning electron microscopy | Circumferential measurement | Metal ceramic crowns | 30 to 80 | 50 |
Anusavice, 1987 [51] | 30 | Noble metal alloy | Investment casting | 5 | Metal die | Premolar | Direct view microscopy | 12 | Crowns with coping thickness of 0.1 mm | 20 to 53 | 31 |
Crowns with coping thickness of 0.2 mm | 16 to 34 |
Author, Year | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 |
---|---|---|---|---|---|---|---|---|
Giti, 2023 [38] | Y | Y | Y | Y | Y | Y | Y | Y |
Heboyan, 2022 [39] | Y | Y | Y | Y | Y | Y | Y | Y |
Kunz, 2022 [40] | Y | Y | Y | Y | Y | U | Y | Y |
Tekin, 2020 [45] | Y | Y | Y | Y | Y | Y | Y | Y |
Ortega, 2017 [41] | Y | Y | Y | Y | Y | Y | Y | Y |
Saraswathi, 2016 [42] | Y | Y | Y | Y | Y | N | Y | Y |
Gómez-Cogolludo, 2013 [46] | Y | Y | Y | U | N | N | N | N |
Kim, 2013 [43] | Y | Y | Y | Y | Y | Y | Y | Y |
Limkangwalmongkol, 2007 [49] | Y | Y | Y | Y | Y | N | Y | Y |
Tao, 2006 [44] | Y | Y | Y | Y | Y | Y | Y | Y |
Nakamura, 1998 [50] | Y | Y | Y | Y | Y | U | Y | Y |
Leong, 1994 [47] | Y | Y | Y | Y | Y | U | Y | Y |
Chan, 1989 [48] | Y | Y | U | N | N | U | U | N |
Anusavice, 1987 [51] | Y | Y | Y | Y | U | U | Y | Y |
4. Discussion
4.1. Key Findings
4.2. Measurement Technique and Marginal Gap
4.3. Measurement Locations and Sample Sizes
4.4. Crown Coping Material and Marginal Gap
4.5. Core Materials and Marginal Gap
4.6. Limitations
5. Conclusions
- 1.
- Direct view microscopy was the most commonly utilised instrument for measuring the marginal gaps of single pre-cemented metal–ceramic crowns, yielding the smallest reported mean marginal gap of 75.00 ± 26.87 µm.
- 2.
- Metal–ceramic crowns constructed using conventional casting techniques presented similar marginal gaps to CAD-CAM crown copings.
- 3.
- Metal–ceramic crowns constructed with noble metal alloys reported the lowest mean marginal gaps at 27.90 ± 11.16 µm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
CAD-CAM | Computer-Aided Design–Computer-Aided Manufacturing |
SEM | Scanning electron microscopy |
References
- Canadian Agency for Drugs and Technologies in Health. Porcelain-Fused-to-Metal Crowns Versus All-Ceramic Crowns; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2016. [Google Scholar]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef]
- Contrepois, M.; Soenen, A.; Bartala, M.; Laviole, O. Marginal adaptation of ceramic crowns: A systematic review. J. Prosthet. Dent. 2013, 110, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, F. Marginal fit of all-ceramic crowns fabricated using two extraoral CAD/CAM systems in comparison with the conventional technique. Clin. Cosmet. Investig. Dent. 2017, 9, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Nonaka, M.; Maruyama, T. In vitro fitting accuracy of copy-milled alumina cores and all-ceramic crowns. Int. J. Prosthodont. 2000, 13, 189–193. [Google Scholar]
- Souza, R.O.A.; Özcan, M.; Pavanelli, C.A.; Buso, L.; Lombardo, G.H.L.; Michida, S.M.A.; Mesquita, A.M.M.; Bottino, M.A. Marginal and internal discrepancies related to margin design of ceramic crowns fabricated by a CAD/CAM system. J. Prosthodont. Implant. Esthet. Reconstr. Dent. 2012, 21, 94–100. [Google Scholar] [CrossRef]
- Tsirogiannis, P.; Reissmann, D.R.; Heydecke, G. Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: A systematic review and meta-analysis. J. Prosthet. Dent. 2016, 116, 328–335. [Google Scholar] [CrossRef]
- Asavapanumas, C.; Leevailoj, C. The influence of finish line curvature on the marginal gap width of ceramic copings. J. Prosthet. Dent. 2013, 109, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, Y.; Cheng, H.; Sawase, T. Finish-line designs for ceramic crowns: A systematic review and meta-analysis. J. Prosthet. Dent. 2019, 122, 22–30. [Google Scholar] [CrossRef]
- Kocaağaoğlu, H.; Albayrak, H.; Kilinc, H.I.; Gümüs, H.Ö. Effect of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with different CAD-CAM technologies. J. Prosthet. Dent. 2017, 118, 672–677. [Google Scholar] [CrossRef]
- Usta Kutlu, İ.; Hayran, Y. Influence of various fabrication techniques and porcelain firing on the accuracy of metal-ceramic crowns. BMC Oral Health 2024, 24, 845. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Liao, J.; Liu, L.; Ye, X.; Lin, S.; Ye, J. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting. J. Prosthet. Dent. 2017, 118, 69–75. [Google Scholar] [CrossRef]
- Haralur, S.B.; Ghaseb, G.A.A.L.; Alqahtani, N.A.; Alqahtani, B. Comparison of microleakage between different restorative materials to restore marginal gap at crown margin. PeerJ 2021, 9, e10823. [Google Scholar] [CrossRef]
- D’Souza, N.L.; Jutlah, E.M.; Deshpande, R.A.; Somogyi-Ganss, E. Comparison of clinical outcomes between single metal-ceramic and zirconia crowns. J. Prosthet. Dent. 2025, 133, 464–471. [Google Scholar] [CrossRef] [PubMed]
- McLean, J.W.; von Fraunhofer, J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef]
- Hung, S.H.; Hung, K.-S.; Eick, J.D.; Chappell, R.P. Marginal fit of porcelain-fused-to-metal and two types of ceramic crown. J. Prosthet. Dent. 1990, 63, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Nawafleh, N.A.; Mack, F.; Evans, J.; Mackay, J.; Hatamleh, M.M. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: A literature review. J. Prosthodont. 2013, 22, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, M.A.; Torabi, K.A.; Farjood, E.B.; Khaledi, A.A.R. Comparison the marginal and internal fit of metal copings cast from wax patterns fabricated by CAD/CAM and conventional wax up techniques. J. Dent. 2013, 14, 118. [Google Scholar]
- Paul, N.; Swamy, K.N.R.; Dhakshaini, M.R.; Sowmya, S.; Meravini, M. Marginal and internal fit evaluation of conventional metal-ceramic versus zirconia CAD/CAM crowns. J. Clin. Exp. Dent. 2020, 12, e31. [Google Scholar]
- Sanches, I.B.; Metzker, T.C.; Kappler, R.; Oliveira, M.V.; Carvalho, A.O.; Lima, E.M.C.X. Marginal adaptation of CAD-CAM and heat-pressed lithium disilicate crowns: A systematic review and meta-analysis. J. Prosthet. Dent. 2023, 129, 34–39. [Google Scholar] [CrossRef]
- Groten, M.; Axmann, D.; Pröbster, L.; Weber, H. Determination of the minimum number of marginal gap measurements required for practical in vitro testing. J. Prosthet. Dent. 2000, 83, 40–49. [Google Scholar] [CrossRef]
- Matta, R.E.; Schmitt, J.; Wichmann, M.; Holst, S. Circumferential fit assessment of CAD/CAM single crowns—A pilot investigation on a new virtual analytical protocol. Quintessence Int. 2012, 43, 801–809. [Google Scholar] [PubMed]
- Schmalz, G.; Federlin, M.; Reich, E. Effect of dimension of luting space and luting composite on marginal adaptation of a class II ceramic inlay. J. Prosthet. Dent. 1995, 73, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Groten, M.; Girthofer, S.; Pröbster, L. Marginal fit consistency of copy-milled all-ceramic crowns during fabrication by light and scanning electron microscopic analysis in vitro. J. Oral Rehabil. 1997, 24, 871–881. [Google Scholar] [CrossRef]
- Hasanzade, M.; Aminikhah, M.; Afrashtehfar, K.I.; Alikhasi, M. Marginal and internal adaptation of single crowns and fixed dental prostheses by using digital and conventional workflows: A systematic review and meta-analysis. J. Prosthet. Dent. 2021, 126, 360–368. [Google Scholar] [CrossRef]
- Mounajjed, R.; Layton, D.M.; Azar, B. The marginal fit of E. max Press and E. max CAD lithium disilicate restorations: A critical review. Dent. Mater. J. 2016, 35, 835–844. [Google Scholar] [CrossRef]
- Kandavalli, S.R.; Kandavalli, S.R.; Ruban, R.S.; Lo, C.H.; Kumar, R.; Elshalakany, A.B.; Pruncu, C.I. A conceptual analysis on ceramic materials used for dental practices: Manufacturing techniques and microstructure. ECS J. Solid. State Sci. Technol. 2022, 11, 053005. [Google Scholar] [CrossRef]
- Van den Breemer, C.R.G.; Gresnigt, M.M.M.; Cune, M.S. Cementation of glass-ceramic posterior restorations: A systematic review. Biomed. Res. Int. 2015, 2015, 148954. [Google Scholar] [CrossRef]
- Dudley, J.; Farook, T.H. Marginal gap measurement of ceramic single crowns before cementation: A systematic review. J. Prosthet. Dent. 2025, 133, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.; Farook, T.H. Marginal Gap of Pre-Cemented Endocrowns: A Systematic Review of Measurement Methods and the Influence of Fabrication Method and Crown Material. Clin. Exp. Dent. Res. 2025, 11, e70152. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.; Farook, T.H. Measuring the Marginal Gap of Pre-Cemented All-Metal Single Crowns: A Systematic Review of In Vitro Studies. Dent. J. 2025, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-J.; Yoon, M.-J.; Kim, W.-H.; Ryu, G.-J.; Bang, M.-K.; Huh, J.-B. Marginal and Internal Fit of Conventional Metal-Ceramic and Lithium Disilicate CAD/CAM Crowns. Int. J. Prosthodont. 2015, 28, 519–521. [Google Scholar] [CrossRef][Green Version]
- Park, J.-K.; Kim, H.-Y.; Kim, W.-C.; Kim, J.-H. Evaluation of the fit of metal ceramic restorations fabricated with a pre-sintered soft alloy. J. Prosthet. Dent. 2016, 116, 909–915. [Google Scholar] [CrossRef]
- Tanveer, F.M.; Rai, R.; Kumar, S.A.; Prabhu, R.; Govindan, R.T. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques. Indian J. Dent. Res. 2017, 28, 291–297. [Google Scholar] [CrossRef]
- Biscaro, L.; Bonfiglioli, R.; Soattin, M.; Vigolo, P. An in vivo evaluation of fit of zirconium-oxide based ceramic single crowns, generated with two CAD/CAM systems, in comparison to metal ceramic single crowns. J. Prosthodont. Implant. Esthet. Reconstr. Dent. 2013, 22, 36–41. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, J.G.D.S.P.; Guedes, C.G.; de Oliveira Abi-Rached, F.; Trindade, F.Z.; Fonseca, R.G. Marginal fit of metal-ceramic copings: Effect of luting cements and tooth preparation design. J. Prosthodont. 2019, 28, e265–e270. [Google Scholar] [CrossRef]
- Tamim, H.; Skjerven, H.; Ekfeldt, A.; Rønold, H.J. Clinical evaluation of CAD/CAM metal-ceramic posterior crowns fabricated from intraoral digital impressions. Int. J. Prosthodont. 2014, 27, 331–337. [Google Scholar] [CrossRef]
- Giti, R.; Hosseinpour Aghaei, M.; Mohammadi, F. The effect of repeated porcelain firings on the marginal fit of millable and conventional casting alloys. PLoS ONE 2023, 18, e0275374. [Google Scholar] [CrossRef] [PubMed]
- Heboyan, A.; Marya, A.; Syed, A.U.Y.; Khurshid, Z.; Zafar, M.S.; Rokaya, D.; Anastasyan, M. In vitro microscopic evaluation of metal-and zirconium-oxide-based crowns’ marginal fit. Pesqui. Bras. Odontopediatria Clin. Integr. 2022, 22, e210144. [Google Scholar] [CrossRef]
- Kunz, P.V.M.; Serpa, G.A.; da Cunha, L.F.; Correr, G.M.; Gonzaga, C.C. Fit of metal-ceramic crowns: Effect of coping fabrication method and veneering ceramic application. Braz. J. Oral Sci. 2022, 21, e225136. [Google Scholar]
- Ortega, R.; Gonzalo, E.; Gomez-Polo, M.; Lopez-Suarez, C.; Suarez, M.J. SEM evaluation of the precision of fit of CAD/CAM zirconia and metal-ceramic posterior crowns. Dent. Mater. J. 2017, 36, 387–393. [Google Scholar] [CrossRef]
- Saraswathi, D.; Leneena, G.; Babu, M.; Sudheer, V.; Puvvada, S.; Vyapaka, P. Comparative Evaluation of Marginal Vertical Discrepancies of Full Zirconia Crowns, Layered Zirconia Crowns, and Metal Ceramic Crowns: An: In Vitro: Study. J. Int. Oral Health 2016, 8, 208–213. [Google Scholar] [CrossRef]
- Kim, K.-B.; Kim, J.-H.; Kim, W.-C.; Kim, H.-Y.; Kim, J.-H. Evaluation of the marginal and internal gap of metal-ceramic crown fabricated with a selective laser sintering technology: Two-and three-dimensional replica techniques. J. Adv. Prosthodont. 2013, 5, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Yoda, M.; Kimura, K.; Okuno, O. Fit of metal ceramic crowns cast in Au-1.6 wt% Ti alloy for different abutment finish line curvature. Dent. Mater. 2006, 22, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Tekin, Y.H.; Hayran, Y. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness. J. Adv. Prosthodont. 2020, 12, 283. [Google Scholar] [CrossRef]
- Gómez-Cogolludo, P.; Castillo-Oyagüe, R.; Lynch, C.D.; Suárez-García, M.-J. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns. J. Dent. 2013, 41, 826–831. [Google Scholar] [CrossRef]
- Leong, D.; Chai, J.; Lautenschlager, E.; Gilbert, J. Marginal fit of machine-milled titanium and cast titanium single crowns. Int. J. Prosthodont. 1994, 7, 440–447. [Google Scholar] [PubMed]
- Chan, C.; Haraszthy, G.; Geis-Gerstorfer, J.; Weber, H.; Huettemann, H. Scanning electron microscopic studies of the marginal fit of three esthetic crowns. Quintessence Int. 1989, 20, 189–193. [Google Scholar]
- Limkangwalmongkol, P.; Chiche, G.J.; Blatz, M.B. Precision of fit of two margin designs for metal-ceramic crowns. J. Prosthodont. 2007, 16, 233–237. [Google Scholar] [CrossRef]
- Nakamura, Y.; Anusavice, K.J. Marginal Distortion of Thermally Incompatible Metal Ceramic Crowns with Overextended Margins. Int. J. Prosthodont. 1998, 11, 325–332. [Google Scholar]
- Anusavice, K.J.; Carroll, J.E. Effect of incompatibility stress on the fit of metal-ceramic crowns. J. Dent. Res. 1987, 66, 1341–1345. [Google Scholar] [CrossRef]
- Pera, P.; Gilodi, S.; Bassi, F.; Carossa, S. In vitro marginal adaptation of alumina porcelain ceramic crowns. J. Prosthet. Dent. 1994, 72, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zheng, N.; Liu, C.; Wu, Y.; Omran, M.; Tang, J.; Zhang, F.; Chen, G. Crystal growth mechanism of nano nSc-Y/ZrO2 ceramic powders prepared by co-precipitation method. Ceram. Int. 2025, 51, 11878–11888. [Google Scholar] [CrossRef]
Databases Interrogated | Search Terms |
---|---|
PubMed | Pubmed: ((((Fit OR Gap * OR Space OR Distance OR Length * OR Accurac * OR Precision)) AND ((“internal margin *” OR “internal discrepanc *” OR “margin * adaptation*” OR “cervical margin *” OR preparation OR “margin * integrity” OR “margin * opening *” OR “edge gap *” OR “margin * gap *”))) AND ((“Un-cemented” OR “Fixed dental”))) AND ((PBM OR “Porcelain fused to metal” OR “Porcelain bonded to zirconia” OR “PBZ” OR “Metal ceramic” or “ceramic metal”)) |
Scopus | (TITLE-ABS-KEY ((Fit OR Gap * OR Space OR Distance OR Length * OR Accurac * OR Precision)) AND TITLE-ABS-KEY ((“internal margin *” OR “internal discrepanc *” OR “margin * adaptation *” OR “cervical margin *” OR preparation OR “margin * integrity” OR “margin * opening *” OR “edge gap *” OR “margin * gap *”)) AND TITLE-ABS-KEY ((“Un-cemented” OR “Fixed dental”)) AND TITLE-ABS-KEY ((PBM OR “Porcelain fused to metal” OR “Porcelain bonded to zirconia” OR “PBZ” OR “Metal ceramic” OR “ceramic metal”))) |
Web of Science (all databases) | (Fit OR Gap * OR Space OR Distance OR Length * OR Accurac * OR Precision) (Topic) AND (“internal margin *” OR “internal discrepanc *” OR “margin * adaptation *” OR “cervical margin *” OR preparation OR “margin * integrity” OR “margin * opening *” OR “edge gap *” OR “margin * gap *”) (Topic) AND (“Un-cemented” OR “Fixed dental”) (Topic) AND (PBM OR “Porcelain fused to metal” OR “Porcelain bonded to zirconia” OR “PBZ” OR “Metal ceramic” or “ceramic metal”) (Topic) |
EBSCOHost | (TI(Fit OR Gap * OR Space OR Distance OR Length * OR Accurac * OR Precision) OR AB(Fit OR Gap * OR Space OR Distance OR Length * OR Accurac * OR Precision)) AND (TI(“internal margin *” OR “internal discrepanc *” OR “margin * adaptation *” OR “cervical margin *” OR preparation OR “margin * integrity” OR “margin * opening *” OR “edge gap *” OR “margin * gap *”) OR AB(“internal margin *” OR “internal discrepanc *” OR “margin * adaptation *” OR “cervical margin *” OR preparation OR “margin * integrity” OR “margin * opening *” OR “edge gap *” OR “margin * gap *”)) AND (TI(“Un-cemented” OR “Fixed dental”) OR AB(“Un-cemented” OR “Fixed dental”) OR DE “Dental Crowns”) AND (TI(PBM OR “Porcelain fused to metal” OR “Porcelain bonded to zirconia” OR “PBZ” OR “Metal ceramic”) OR AB(PBM OR “Porcelain fused to metal” OR “Porcelain bonded to zirconia” OR “PBZ” OR “Metal ceramic”))S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudley, J.; Farook, T. Marginal Gap Measurement of Pre-Cemented Metal–Ceramic Crowns: A Systematic Review. Prosthesis 2025, 7, 118. https://doi.org/10.3390/prosthesis7050118
Dudley J, Farook T. Marginal Gap Measurement of Pre-Cemented Metal–Ceramic Crowns: A Systematic Review. Prosthesis. 2025; 7(5):118. https://doi.org/10.3390/prosthesis7050118
Chicago/Turabian StyleDudley, James, and Taseef Farook. 2025. "Marginal Gap Measurement of Pre-Cemented Metal–Ceramic Crowns: A Systematic Review" Prosthesis 7, no. 5: 118. https://doi.org/10.3390/prosthesis7050118
APA StyleDudley, J., & Farook, T. (2025). Marginal Gap Measurement of Pre-Cemented Metal–Ceramic Crowns: A Systematic Review. Prosthesis, 7(5), 118. https://doi.org/10.3390/prosthesis7050118