Investigation of Connector Parameters for Fracture Strength of Zirconia and Lithium Disilicate Resin-Bonded Fixed Dental Prosthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Experiment (Load-to-Fracture Test)
2.1.1. Sample Size Calculation
2.1.2. Sample Preparation
2.1.3. Cementation of the Prostheses
2.1.4. Load-to-Fracture Test
2.1.5. Statistical Analysis
3. Results
3.1. Fracture Strength
3.2. Comparison of Load-to-Fracture Strengths Between Different Connector Parameters and Different Materials
3.3. Failure Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gulati, J.S.; Tabiat-Pour, S.; Watkins, S.; Banerjee, A. Resin-bonded bridges–the problem or the solution? Part 1: Assessment and design. Dent. Update 2016, 43, 506–521. [Google Scholar] [CrossRef]
- Durey, K.A.; Nixon, P.J.; Robinson, S.; Chan, M.F.W.-Y. Resin bonded bridges: Techniques for success. Br. Dent. J. 2011, 211, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Zlatarić, D.K.; Soldo, M. Considerations for conservative, all ceramic prosthodontic single tooth replacement in the anterior region: A systematic review. Dent. J. 2025, 13, 219. [Google Scholar] [CrossRef]
- Botelho, M.G.; Ma, X.; Cheung, G.J.K.; Law, R.K.S.; Tai, M.T.C.; Yu Hang Lam, W. Long-term clinical evaluation of 211 two-unit cantilevered resin-bonded fixed partial dentures. J. Dent. 2014, 42, 778–784. [Google Scholar] [CrossRef]
- Botelho, M.G.; Chan, A.W.; Leung, N.C.; Lam, W. Long-term evaluation of cantilevered versus fixed–fixed resin-bonded fixed partial dentures for missing maxillary incisors. J. Dent. 2016, 45, 59–66. [Google Scholar] [CrossRef][Green Version]
- Lim, T.W.; Idris, R.I.; Mahmud, M. Patient satisfaction following resin-bonded fixed dental prostheses cemented by using the Dahl concept. Clin. Exp. Dent. Res. 2023, 9, 1089–1095. [Google Scholar] [CrossRef]
- Idris, R.I.; Shoji, Y.; Lim, T.W. Occlusal force and occlusal contact reestablishment with resin-bonded fixed partial dental prostheses using the dahl concept: A clinical study. J. Prosthet. Dent. 2022, 127, 737–743. [Google Scholar] [CrossRef]
- Lim, T.W.; Ab Ghani, S.M.; Mahmud, M. Occlusal re-establishment and clinical complications of resin-bonded fixed partial dental prostheses cemented at an increased occlusal vertical dimension: A retrospective study. J. Prosthet. Dent. 2022, 127, 258–265. [Google Scholar] [CrossRef]
- Lim, T.W.; Ariff, T.F.T.M. Single tooth implant versus resin-bonded bridge: A study of patient’s satisfaction. Eur. J. Gen. Dent. 2020, 9, 90–95. [Google Scholar] [CrossRef]
- Kern, M. Fifteen-year survival of anterior all-ceramic cantilever resin-bonded fixed dental prostheses. J. Dent. 2017, 56, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Botelho, M.G.; Lam, W.Y. A fixed movable resin-bonded fixed dental prosthesis—A 16 years clinical report. J. Prosthodont. Res. 2016, 60, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Gallucci, G.O.; Belser, U.C. Anatomic crown width/length ratios of unworn and worn maxillary teeth in white subjects. J. Prosthet. Dent. 2003, 89, 453–461. [Google Scholar] [CrossRef]
- Raigrodski, A.J.; Chiche, G.J. The safety and efficacy of anterior ceramic fixed partial dentures: A review of the literature. J. Prosthet. Dent. 2001, 86, 520–525. [Google Scholar] [CrossRef]
- Quinn, G.; Studart, A.; Hebert, C.; VerHoef, J.; Arola, D. Fatigue of zirconia and dental bridge geometry: Design implications. Dent. Mater. 2010, 26, 1133–1136. [Google Scholar] [CrossRef]
- Kamposiora, P.; Papavasiliou, G.; Bayne, S.C.; Felton, D.A. Stress concentration in all-ceramic posterior fixed partial dentures. Quintessence Int. 1996, 27, 701–706. [Google Scholar]
- Pospiech, P.; Rammelsberg, P.; Goldhofer, G.; Gernet, W. All-ceramic resin-bonded bridges A 3-dimensional finite-element analysis study. Eur. J. Oral Sci. 1996, 104, 390–395. [Google Scholar] [CrossRef]
- Sasse, M.; Kern, M. All-ceramic resin-bonded fixed dental prostheses: Treatment planning, clinical procedures, and outcome. Quintessence Int. 2014, 45, 291–297. [Google Scholar]
- Wei, Y.-R.; Wang, X.-D.; Zhang, Q.; Li, X.-X.; Blatz, M.B.; Jian, Y.-T.; Zhao, K. Clinical performance of anterior resin-bonded fixed dental prostheses with different framework designs: A systematic review and meta-analysis. J. Dent. 2016, 47, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Alraheam, I.A.; Ngoc, N.C.; Wiesen, C.A.; Donovan, T.E. Five-year success rate of resin-bonded fixed partial dentures: A systematic review. J. Esthet. Restor. Dent. 2018, 31, 40–50. [Google Scholar] [CrossRef]
- Kern, M.; Douglas, W.H.; Fechtig, T.; Strub, J.R.; DeLong, R. Fracture strength of all-porcelain, resin bonded bridges after testing in an artificial oral environment. J. Dent. 1993, 21, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Fechtig, T.; Strub, J.R. Influence of water storage and thermal cycling on the fracture strength of all-porcelain, resin-bonded fixed partial dentures. J. Prosthet. Dent. 1994, 71, 251–256. [Google Scholar] [CrossRef]
- Koutayas, S.O.; Kern, M.; Ferraresso, F.; Strub, J.R. Influence of design and mode of loading on the fracture strength of all-ceramic resin-bonded fixed partial dentures: An in vitro study in a dual-axis chewing simulator. J. Prosthet. Dent. 2000, 83, 540–547. [Google Scholar] [CrossRef]
- Koutayas, S.O.; Kern, M.; Ferraresso, F.; Strub, J.R. Influence of framework design on fracture strength of mandibular anterior all-ceramic resin-bonded fixed partial dentures. Int. J. Prosthodont. 2002, 15, 223–229. [Google Scholar]
- Sillam, C.-E.; Cetik, S.; Ha, T.H.; Atash, R. Influence of the amount of tooth surface preparation on the shear bond strength of zirconia cantilever single-retainer resin-bonded fixed partial denture. J. Adv. Prosthodont. 2018, 10, 286–290. [Google Scholar] [CrossRef]
- Rosentritt, M.; Kolbeck, C.; Ries, S.; Gross, M.; Behr, M.; Handel, G. Zirconia resin-bonded fixed partial dentures in the anterior maxilla. Quintessence Int. 2008, 39, 313–319. [Google Scholar]
- Rosentritt, M.; Ries, S.; Kolbeck, C.; Westphal, M.; Richter, E.J.; Handel, G. Fracture characteristics of anterior resin-bonded zirconia-fixed partial dentures. Clin. Oral Investig. 2009, 13, 453–457. [Google Scholar] [CrossRef]
- Nemoto, R.; Nozaki, K.; Fukui, Y.; Yamashita, K.; Miura, H. Effect of framework design on the surface strain of zirconia fixed partial dentures. Dent. Mater. J. 2013, 32, 289–295. [Google Scholar] [CrossRef]
- Sterzenbach, G.; Tunjan, R.; Rosentritt, M.; Naumann, M. Increased tooth mobility because of loss of alveolar bone support: A hazard for zirconia two-unit cantilever resin-bonded FDPs in vitro? J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Gresnigt, M.M.; Tirlet, G.; Bošnjak, M.; van der Made, S.; Attal, J.-P. Fracture strength of lithium disilicate cantilever resin bonded fixed dental prosthesis. J. Mech. Behav. Biomed. Mater. 2020, 103, 103615. [Google Scholar] [CrossRef] [PubMed]
- Kitani, J.; Komine, F.; Kusaba, K.; Nakase, D.; Ito, K.; Matsumura, H. Effect of firing procedures and layering thickness of porcelain on internal adaptation of zirconia cantilever resin-bonded fixed dental prostheses. J. Prosthodont. Res. 2022, 66, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Noda, M.; Omori, S.; Nemoto, R.; Sukumoda, E.; Takita, M.; Foxton, R.; Nozaki, K.; Miura, H. Strain analysis of anterior resin-bonded fixed dental prostheses with different thicknesses of high translucent zirconia. J. Dent. Sci. 2021, 16, 628–635. [Google Scholar] [CrossRef]
- Di Fiore, A.; Stellini, E.; Savio, G.; Rosso, S.; Graiff, L.; Granata, S.; Monaco, C.; Meneghello, R. Assessment of the different types of failure on anterior cantilever resin-bonded fixed dental prostheses fabricated with three different materials: An in vitro study. Appl. Sci. 2020, 10, 4151. [Google Scholar] [CrossRef]
- Naguib, A.; Fahmy, N.; Hamdy, A.; Wahsh, M. Fracture resistance of different designs of a resin-bonded fixed dental prosthesis: An in vitro study. Int. J. Prosthodont. 2021, 34, 348–356. [Google Scholar] [CrossRef]
- Kern, M. Clinical long-term survival of two-retainer and single-retainer all-ceramic resin-bonded fixed partial dentures. Quintessence Int. 2005, 36, 141–147. [Google Scholar]
- Kern, M.; Sasse, M. Ten-year survival of anterior all-ceramic resin-bonded fixed dental prostheses. J. Adhes. Dent. 2011, 13, 407–410. [Google Scholar] [PubMed]
- Yazigi, C.; Kern, M. Clinical evaluation of zirconia cantilevered single-retainer resin-bonded fixed dental prostheses replacing missing canines and posterior teeth. J. Dent. 2022, 116, 103907. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.Y.H.; Lim, T.W.; Yon, M.J.Y.; Chau, J.M.H.; Lai, G.C.H.; Wang, D.C.P.; Botelho, M.G. Posterior two-unit cantilevered zirconia resin-bonded fixed partial dentures: A 3-year prospective single-arm clinical trial. J. Dent. 2024, 18, 105140. [Google Scholar] [CrossRef] [PubMed]
- Tezulas, E.; Yildiz, C.; Evren, B.; Ozkan, Y. Clinical procedures, designs, and survival rates of all-ceramic resin-bonded fixed dental prostheses in the anterior region: A systematic review. J. Esthet. Restor. Dent. 2018, 30, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.L.M.; Lim, T.W.; Chang, H.-C.; Ab Ghani, A.R.; Tsoi, J.K.H.; Ab Ghani, S.M. Structural integrity of anterior ceramic resin-bonded fixed partial denture: A finite element analysis study. J. Funct. Biomater. 2023, 14, 108. [Google Scholar] [CrossRef]
- Plengsombut, K.; Brewer, J.D.; Monaco, E.A., Jr.; Davis, E.L. Effect of two connector designs on the fracture resistance of all-ceramic core materials for fixed dental prostheses. J. Prosthet. Dent. 2009, 101, 166–173. [Google Scholar] [CrossRef]
- Blatz, M.B.; Alvarez, M.; Sawyer, K.; Brindis, M. How to Bond Zirconia: The APC Concept. Compend. Contin. Educ. Dent. 2016, 37, 611–618. [Google Scholar]
- Jo, E.-H.; Huh, Y.-H.; Ko, K.-H.; Park, C.-J.; Cho, L.-R. Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent. J. Adv. Prosthodont. 2018, 10, 374–380. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; Li, B.; Li, J. Surface modifications of zirconia with plasma pretreatment and polydopamine coating to enhance the bond strength and durability between zirconia and titanium. Dent. Mater. J. 2023, 42, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Kasem, A.T.; Abo-Madina, M.; Tribst, J.P.M.; Al-Zordk, W. Cantilever resin-bonded fixed dental prosthesis to substitute a single premolar: Impact of retainer design and ceramic material after dynamic loading. J. Prosthodont. Res. 2023, 67, 595–602. [Google Scholar] [CrossRef]
- Elshiyab, S.H.; Nawafleh, N.; Öchsner, A.; George, R. Fracture resistance of implant-supported monolithic crowns cemented to zirconia hybrid-abutments: Zirconia-based crowns vs. lithium disilicate crowns. J. Adv. Prosthodont. 2018, 10, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Hamza, T.A.; Attia, M.A.; El-Hossary, M.M.K.; Mosleh, I.E.; Shokry, T.E.; Wee, A.G. Flexural strength of small connector designs of zirconia-based partial fixed dental prostheses. J. Prosthet. Dent. 2016, 115, 224–229. [Google Scholar] [CrossRef]
- Murase, T.; Nomoto, S.; Sato, T.; Shinya, A.; Koshihara, T.; Yasuda, H. Effect of connector design on fracture resistance in all-ceramic fixed partial dentures for mandibular incisor region. Bull. Tokyo Dent. Coll. 2014, 55, 149–155. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hafezeqoran, A.; Koodaryan, R.; Hemmati, Y.; Akbarzadeh, A. Effect of connector size and design on the fracture resistance of monolithic zirconia fixed dental prosthesis. J. Dent. Res. Dent. Clin. Dent. Prospect. 2020, 14, 218–222. [Google Scholar] [CrossRef]
- Sailer, I.; Bonani, T.; Brodbeck, U.; Hammerle, C. Retrospective clinical study of single-retainer cantilever anterior and posterior glass-ceramic resin-bonded fixed dental prostheses at a mean follow-up of 6 years. Int. J. Prosthodont. 2013, 26, 443–450. [Google Scholar] [CrossRef]
- Roffie, J.; Lim, T.W.; Patar, M.N.; Abdullah, S.A.; Ghani, H.A. Wireless sensor network for a bite force recorder. J. Int. Dent. Med. Res. 2020, 13, 1592–1597. [Google Scholar]
- Schmidt, M.B.; Rosentritt, M.; Hahnel, S.; Wertz, M.; Hoelzig, H.; Kloess, G.; Koenig, A. Fracture behavior of cantilever fixed dental prostheses fabricated from different zirconia generations. Quintessence Int. 2022, 53, 414–422. [Google Scholar] [PubMed]
- De Boever, J.A.; McCall, W.D., Jr.; Holden, S.; Ash, M.M., Jr. Functional occlusal forces: An investigation by telemetry. J. Prosthet. Dent. 1978, 40, 326–333. [Google Scholar] [CrossRef] [PubMed]
Lithium Disilicate Trapezoidal (h) × (b) × (w) mm | Zirconia Trapezoidal (h) × (b) × (w) mm |
---|---|
5 × 4 × 1 mm | 5 × 4 × 1 mm |
4 × 2 × 1 mm | 4 × 2 × 1 mm |
Inclusion | Exclusion |
---|---|
Maxillary central incisor teeth | Presence of crack/craze lines |
Sound or minimally restored | Fracture |
Flat palatal surface | Exposed dentine on palatal surface |
Intact enamel with no evidence of pathological wear |
Material | Manufacturer | Composition | Crystallization | Glaze Firing |
---|---|---|---|---|
IPS e.max CAD, lithium disilicate | Ivoclar Vivadent, Schaan, Liechtenstein | SiO2: 57–80%, Li2O: 11–19%, K2O: 0– 13%, P2O5: 0–11%, ZrO2: 0–8%, ZnO: 0–8%, coloring oxides: 0–8%. | Standby temperature: 403 °C; closing time: 6 min; heating rate: 60 °C/min; firing temperature: 770 °C; holding time: 0:10 min; heating rate: 30 °C/min; firing temperature: 850 °C; holding time: 10:00; long-term cooling: 700 °C; vacuum on/off: 770/850 °C. | Standby temperature: 403 °C; closing time: 6 min; temperature increasing rate: 60 °C/min; holding temperature: 725 °C; holding time: 1 min; Vacuum on/off: 450/724 °C. |
IPS e.max ZirCAD prime, zirconia | Ivoclar Vivadent, Schaan, Liechtenstein | Zirconium oxide: 88–95.5%, Yttrium oxide > 6.5–8%, Hafnium oxide ≤ 5%, aluminum oxide ≤ 1%, other oxides ≤ 1.5%. | Standby temperature: 403 °C; closing time: 6 min; heating rate: 60 °C/min; firing temperature: 710 °C; holding time: 1:00 min; heating rate: 15–45 °C/min; firing temperature: 710 °C; holding time: 1:00; long-term cooling: 709 °C; vacuum on/off: 450 °C. | Standby temperature: 403 °C; closing time: 6 min; temperature increasing rate: 45 °C/min; holding temperature: 710 °C; holding time: 1 min; Vacuum on/off: 450 °C. |
Type | Failure Mode | Description |
---|---|---|
I | Favorable (non-catastrophic/repairable) | Debonding of the restoration without fracture Fracture of the restoration without displacement (no loss of adhesion) Fracture of the restoration with displacement (loss of adhesion) Fracture of the restoration/tooth complex above the cementoenamel junction |
II | Unfavorable (catastrophic/non-repairable) | Fracture of the restoration/tooth complex below the cementoenamel junction Root fracture with only restoration displacement (no restoration fracture), which requires tooth extraction |
Factors | n | Adjusted Mean (95% CI) | Adjusted Mean Difference (95% CI) | F Stats (df) | p Value * |
---|---|---|---|---|---|
Material | |||||
Lithium disilicate | 10 | 136.62 (75.81, 197.43) | −71.95 (−157.95, 14.05) | 3.115 (1,17) | 0.096 |
Zirconia | 10 | 208.56 (147.75, 269.38) | |||
Dimension | |||||
4 (h) × 2 (b) × 1 (w) mm | 10 | 120.48 (59.67, 181.29) | −104.23 (190.23, −18.23) | 6.538 (1,17) | 0.02 |
5 (h) × 4 (b) × 1 (w) mm | 10 | 224.71 (163.90, 285.52) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ab Ghani, S.M.; Mohd Osman, M.L.; Chang, H.-C.; Ab Ghani, A.R.; Lim, T.W. Investigation of Connector Parameters for Fracture Strength of Zirconia and Lithium Disilicate Resin-Bonded Fixed Dental Prosthesis. Prosthesis 2025, 7, 115. https://doi.org/10.3390/prosthesis7050115
Ab Ghani SM, Mohd Osman ML, Chang H-C, Ab Ghani AR, Lim TW. Investigation of Connector Parameters for Fracture Strength of Zirconia and Lithium Disilicate Resin-Bonded Fixed Dental Prosthesis. Prosthesis. 2025; 7(5):115. https://doi.org/10.3390/prosthesis7050115
Chicago/Turabian StyleAb Ghani, Siti Mariam, Mas Linda Mohd Osman, Hung-Chih Chang, Amir Radzi Ab Ghani, and Tong Wah Lim. 2025. "Investigation of Connector Parameters for Fracture Strength of Zirconia and Lithium Disilicate Resin-Bonded Fixed Dental Prosthesis" Prosthesis 7, no. 5: 115. https://doi.org/10.3390/prosthesis7050115
APA StyleAb Ghani, S. M., Mohd Osman, M. L., Chang, H.-C., Ab Ghani, A. R., & Lim, T. W. (2025). Investigation of Connector Parameters for Fracture Strength of Zirconia and Lithium Disilicate Resin-Bonded Fixed Dental Prosthesis. Prosthesis, 7(5), 115. https://doi.org/10.3390/prosthesis7050115