Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility
Abstract
1. Introduction
2. Materials and Methods
- “Artificial Intelligence” AND “Dentistry”;
- “Machine Learning” OR “Deep Learning” AND “Oral Health”;
- “Decision Support Systems” AND “Dental Ethics”;
- “Neural Networks” AND “Teledentistry”.
- Articles published in English between 2014 and 2024;
- Relevant to the topics of digital dentistry, artificial intelligence, medical ethics, and humanization of care;
- Peer-reviewed articles, including original studies, meta-analyses, narrative reviews, and clinical cases;
- Research addressing ethical, clinical, and regulatory aspects of AI.
- Studies not related to dentistry;
- Non-peer-reviewed literature (e.g., blogs, corporate reports);
- Studies without validated quantitative or qualitative data.
- (1)
- AI-driven diagnostics
- (2)
- Clinical decision support
- (3)
- Ethical concerns
- (4)
- Regulatory challenges
- (5)
- Patient–dentist relationship dynamics
3. Results
3.1. The Relationship Between Dentist and Patient in the Digital Era
3.2. Risks of Unregulated Use of AI in Dentistry
- United States: The FDA has issued guidelines emphasizing clinical validation, ongoing monitoring, and transparency regarding AI capabilities [14].
- European Union: The proposed Artificial Intelligence Act classifies AI systems by risk level and imposes strict requirements for high-risk medical applications, including human oversight and accountability [15].
- Clinical validation through controlled trials;
- Medical supervision to support, not replace, judgment;
- Algorithmic transparency and traceability;
- Ongoing professional training regarding medico-legal implications.
3.3. The Pervasive Use of Technologies and the Risks of Overdiagnosis and Overtreatment
3.4. Risks Related to Overdiagnosis and Psychological Impact on Patients
3.5. Summary of Key Findings
- Randomized controlled trials (18 studies);
- Observational studies (24 studies);
- Systematic reviews (16 studies);
- Meta-analyses (12 studies);
- Narrative reviews (12 studies).
4. Discussion
4.1. Bioethics and Personalization of Care
4.2. The Role of the Dentist in Technological Innovation
- Understanding the logic of AI systems to use them critically;
- Managing digital data while ensuring privacy and regulatory compliance;
- Adopting a multidisciplinary perspective, collaborating with professionals in bioinformatics, ethics, and engineering [30].
4.3. Digital Paternalism and Informed Consent
4.4. Decision-Making Autonomy and the Role of the Doctor in the Era of AI
4.5. AI Transparency Strategies to Strengthen Decision-Making
- Documentation of training datasets and the populations represented;
- Explicit validation protocols, including statistical thresholds and clinical performance metrics;
- Real-time feedback mechanisms, such as confidence scores, predictive risk ranges, and reliability indices.
4.6. Risks Related to Underdiagnosis
- AI systems must be trained on diverse, representative datasets.
- Their performance must be continually validated in multicentric, heterogeneous clinical environments.
- Clinicians must receive adequate training to understand when AI may be insufficient or misleading and when additional investigation or a second opinion is warranted.
4.7. Future Perspectives and Recommendations
4.8. Recommendations for Ethical and Effective Use of Digital Technologies
4.9. The Patient’s Perspective in AI-Driven Dentistry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CAD | Computer-Aided Design |
CAM | Computer-Aided Manufacturing |
References
- Doukas, D.J.; Ozar, D.T.; Darragh, M.; de Groot, J.M.; Carter, B.S.; Stout, N. Virtue and care ethics & humanism in medical education: A scoping review. BMC Med. Educ. 2022, 22, 131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stanley, M.; Paz, A.G.; Miguel, I.; Coachman, C. Fully digital workflow, integrating dental scan, smile design and CAD-CAM: Case report. BMC Oral Health 2018, 18, 134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saghiri, M.A.; Vakhnovetsky, J.; Nadershahi, N. Scoping review of artificial intelligence and immersive digital tools in dental education. J. Dent. Educ. 2022, 86, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Mörch, C.M.; Atsu, S.; Cai, W.; Li, X.; Madathil, S.A.; Liu, X.; Mai, V.; Tamimi, F.; Dilhac, M.A.; Ducret, M. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J. Dent. Res. 2021, 100, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Rokhshad, R.; Ducret, M.; Chaurasia, A.; Karteva, T.; Radenkovic, M.; Roganovic, J.; Hamdan, M.; Mohammad-Rahimi, H.; Krois, J.; Lahoud, P.; et al. Ethical considerations on artificial intelligence in dentistry: A framework and checklist. J. Dent. 2023, 135, 104593. [Google Scholar] [CrossRef] [PubMed]
- Razdan, P.; Das, A.; Habiba, S.; Doley, S.; Tiwari, D.A.; Hazari, P. Knowledge, perception and attitude of dentists regarding the role of artificial intelligence in the field of pediatric dentistry: An online questionnaire study. Dent. Med. Probl. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Keskinbora, K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019, 64, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Göstemeyer, G.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Perez, F.; Pecho, O.E.; Morales, J.C.; Paravina, R.D.; Della Bona, A.; Ghinea, R.; Pulgar, R.; Pérez, M.D.M.; Herrera, L.J. Applications of artificial intelligence in dentistry: A comprehensive review. J. Esthet. Restor. Dent. 2022, 34, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Pethani, F. Promises and perils of artificial intelligence in dentistry. Aust. Dent. J. 2021, 66, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Montori, V.M.; Ruissen, M.M.; Hargraves, I.G.; Brito, J.P.; Kunneman, M. Shared decision-making as a method of care. BMJ Evid. Based Med. 2023, 28, 213–217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savulescu, J.; Giubilini, A.; Vandersluis, R.; Mishra, A. Ethics of artificial intelligence in medicine. Singap. Med. J. 2024, 65, 150–158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Zhang, Z.M. Ethics and governance of trustworthy medical artificial intelligence. BMC Med. Inform. Decis. Mak. 2023, 23, 7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- US Food and Drug Administration. Artificial Intelligence in Drug Development. Available online: https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/artificial-intelligence-drug-development#:~:text=FDA%20published%20a%20draft%20guidance,to%20support%20regulatory%20decision%2Dmaking (accessed on 25 February 2025).
- European Parliament. Artificial Intelligence Regulation: The First Regulation on Artificial Intelligence. 1 June 2023. Available online: https://www.europarl.europa.eu/topics/it/article/20230601STO93804/normativa-sull-ia-la-prima-regolamentazione-sull-intelligenza-artificiale (accessed on 25 February 2025).
- Japanese Ministry of Internal Affairs and Communications. AI Network Society: Promoting the Use of Artificial Intelligence. 2022. Available online: https://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/pressrelease/2022/7/25_03.html (accessed on 25 February 2025).
- Huang, Y.K.; Hsu, L.P.; Chang, Y.C. Artificial intelligence in clinical dentistry: The potentially negative impacts and future actions. J. Dent. Sci. 2022, 17, 1817–1818. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abràmoff, M.D.; Tarver, M.E.; Loyo-Berrios, N.; Trujillo, S.; Char, D.; Obermeyer, Z.; Eydelman, M.B.; Foundational Principles of Ophthalmic Imaging Algorithmic Interpretation Working Group of the Collaborative Community for Ophthalmic Imaging Foundation; Maisel, W.H. Considerations for addressing bias in artificial intelligence for health equity. NPJ Digit. Med. 2023, 6, 170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morley, J.; Machado, C.C.V.; Burr, C.; Cowls, J.; Joshi, I.; Taddeo, M.; Floridi, L. The ethics of AI in health care: A mapping review. Soc. Sci. Med. 2020, 260, 113172. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Thorat, V.; Rao, P.; Joshi, N.; Talreja, P.; Shetty, A.R. Role of Artificial Intelligence (AI) in Patient Education and Communication in Dentistry. Cureus 2024, 16, e59799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asimakopoulou, K.; Rhodes, G.; Daly, B. Risk communication in the dental practice. Br. Dent. J. 2016, 220, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Felländer-Tsai, L. Al ethics, accountability, and sustainability: Revisiting the Hippocratic path. Acta Orthop. 2020, 91, 1–2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rigby, M.J. Ethical dimensions of using artificial intelligence in health care. AMA J. Ethics 2019, 21, 121–124. [Google Scholar]
- Schiff, D.; Borenstein, J. How Should Clinicians Communicate With Patients About the Roles of Artificially Intelligent Team Members? AMA J. Ethics 2019, 21, E138–E145. [Google Scholar] [CrossRef] [PubMed]
- Kelkar, A.H.; Hantel, A.; Koranteng, E.; Cutler, C.S.; Hammer, M.J.; Abel, G.A. Digital Health to Patient-Facing Artificial Intelligence: Ethical Implications and Threats to Dignity for Patients with Cancer. JCO Oncol. Pract. 2024, 20, 314–317. [Google Scholar] [CrossRef]
- Char, D.S.; Shah, N.H.; Magnus, D. Implementing Machine Learning in Health Care—Addressing Ethical Challenges. N. Engl. J. Med. 2018, 378, 981–983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pesapane, F.; Codari, M.; Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Precise4Q Consortium. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laso Guzmán, F.J. Relevance of medical semiology in the technological era. Med. Clin. 2017, 148, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Siracuse, J.J. Protecting patient safety and privacy in the era of artificial intelligence. Semin. Vasc. Surg. 2023, 36, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Luxton, D.D. Recommendations for the ethical use and design of artificial intelligent care providers. Artif. Intell. Med. 2014, 62, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Myskja, B.K.; Steinsbekk, K.S. Personalized medicine, digital technology and trust: A Kantian account. Med. Health Care Philos. 2020, 23, 577–587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmed, N.; Abbasi, M.S.; Zuberi, F.; Qamar, W.; Halim, M.S.B.; Maqsood, A.; Alam, M.K. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry-A Systematic Review. BioMed Res. Int. 2021, 2021, 9751564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, J.H.; Kim, J.H.; Rogowski, L.; Al Shami, S.; Howell, S.E.I. Implementation of teledentistry for orthodontic practices. J. World Fed. Orthod. 2021, 10, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Alhaidry, H.M.; Fatani, B.; Alrayes, J.O.; Almana, A.M.; Alfhaed, N.K. ChatGPT in Dentistry: A Comprehensive Review. Cureus 2023, 15, e38317. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, S.L.; Tsai, S.J.; Bai, Y.M.; Ko, C.H.; Hsu, C.W.; Yang, F.C.; Tsai, C.K.; Tu, Y.K.; Yang, S.N.; Tseng, P.T.; et al. Comparisons of Quality, Correctness, and Similarity Between ChatGPT-Generated and Human-Written Abstracts for Basic Research: Cross-Sectional Study. J. Med. Internet Res. 2023, 25, e51229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yurdakurban, E.; Topsakal, K.G.; Duran, G.S. A comparative analysis of AI-based chatbots: Assessing data quality in orthognathic surgery related patient information. J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101757. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, K.; Kavadella, A.; Aaqel Salim, A.; Stamatopoulos, V.; Kaklamanos, E.G. Evaluation of the Performance of Generative AI Large Language Models ChatGPT, Google Bard, and Microsoft Bing Chat in Supporting Evidence-Based Dentistry: Comparative Mixed Methods Study. J. Med. Internet Res. 2023, 25, e51580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ng, F.Y.C.; Thirunavukarasu, A.J.; Cheng, H.; Tan, T.F.; Gutierrez, L.; Lan, Y.; Ong, J.C.L.; Chong, Y.S.; Ngiam, K.Y.; Ho, D.; et al. Artificial intelligence education: An evidence-based medicine approach for consumers, translators, and developers. Cell Rep. Med. 2023, 4, 101230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Beristain-Colorado, M.D.P.; Castro-Gutiérrez, M.E.M.; Torres-Rosas, R.; Vargas-Treviño, M.; Moreno-Rodríguez, A.; Fuentes-Mascorro, G.; Argueta-Figueroa, L. Application of neural networks for the detection of oral cancer: A systematic review. Dent. Med. Probl. 2024, 61, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Marian, D.; Toro, G.; D’Amico, G.; Trotta, M.C.; D’Amico, M.; Petre, A.; Lile, I.; Hermenean, A.; Fratila, A. Challenges and Innovations in Alveolar Bone Regeneration: A Narrative Review on Materials, Techniques, Clinical Outcomes, and Future Directions. Medicina 2025, 61, 20. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Kosnáčová, H.S.; Kurilová, V.; Kosmeľ, S.; Beňuš, R.; Moravanský, N.; Kováč, P.; Kuracinová, K.M.; Palkovič, M.; Varga, I. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy. Healthcare 2021, 9, 1545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bellini, V.; Valente, M.; Gaddi, A.V.; Pelosi, P.; Bignami, E. Artificial intelligence and telemedicine in anesthesia: Potential and problems. Minerva Anestesiol. 2022, 88, 729–734. [Google Scholar] [CrossRef] [PubMed]
Theme | Key Findings |
---|---|
AI-driven diagnostics | Increased accuracy in detecting caries, periodontal disease, and oral cancer |
Decision Support | AI improves treatment planning but requires human oversight |
Ethical concerns | Algorithmic bias and lack of explainability raise ethical and legal issues |
Regulatory challenges | Lack of harmonization in AI governance across different jurisdictions |
Patient–dentist relationship | AI enhances efficiency but risks depersonalizing patient interactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciarra, F.M.; Caivano, G.; Cacioppo, A.; Messina, P.; Cumbo, E.M.; Di Vita, E.; Scardina, G.A. Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility. Prosthesis 2025, 7, 95. https://doi.org/10.3390/prosthesis7040095
Sciarra FM, Caivano G, Cacioppo A, Messina P, Cumbo EM, Di Vita E, Scardina GA. Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility. Prosthesis. 2025; 7(4):95. https://doi.org/10.3390/prosthesis7040095
Chicago/Turabian StyleSciarra, Fabio Massimo, Giovanni Caivano, Antonino Cacioppo, Pietro Messina, Enzo Maria Cumbo, Emanuele Di Vita, and Giuseppe Alessandro Scardina. 2025. "Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility" Prosthesis 7, no. 4: 95. https://doi.org/10.3390/prosthesis7040095
APA StyleSciarra, F. M., Caivano, G., Cacioppo, A., Messina, P., Cumbo, E. M., Di Vita, E., & Scardina, G. A. (2025). Dentistry in the Era of Artificial Intelligence: Medical Behavior and Clinical Responsibility. Prosthesis, 7(4), 95. https://doi.org/10.3390/prosthesis7040095