Shaping the Future of Upper Extremity Prostheses Through 3D Printing
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection and Eligibility
3. Results
4. Hand Designs
4.1. Type of Prosthesis
4.2. Type of Actuation and Control
4.3. Weight
4.4. Type of Flexors and Extensors
5. Kinematic Specifications
5.1. Range of Motion
5.2. Grasp Type and Grip Strength
6. Manufacturing Specifications
6.1. Printing Technology
6.2. Three-Dimensional Printing Material
6.3. Printing and Material Cost
6.4. Printing and Assembly Difficulty
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cuellar, J.S.; Smit, G.; Breedveld, P.; Zadpoor, A.A.; Plettenburg, D. Functional evaluation of a non-assembly 3D-printed hand prosthesis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 1122–1131. [Google Scholar] [CrossRef]
- Wendo, K.; Barbier, O.; Bollen, X.; Schubert, T.; Lejeune, T.; Raucent, B.; Olszewski, R. Open-source 3D printing in the prosthetic field—The case of upper limb prostheses: A review. Machines 2022, 10, 413. [Google Scholar] [CrossRef]
- Zuniga, J.; Katsavelis, D.; Peck, J.; Stollberg, J.; Petrykowski, M.; Carson, A.; Fernandez, C. Cyborg beast: A low-cost 3D-printed prosthetic hand for children with upper-limb differences. BMC Res. Notes 2015, 8, 10. [Google Scholar] [CrossRef]
- Ku, I.; Lee, G.K.; Park, C.Y.; Lee, J.; Jeong, E. Clinical outcomes of a low-cost single-channel myoelectric-interface three-dimensional hand prosthesis. Arch. Plast. Surg. 2019, 46, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.; Day, S.; Dupan, S.; Nazarpour, K.; Dyson, M. 3D-printing and upper-limb prosthetic sockets: Promises and pitfalls. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Young, K.J.; Pierce, J.E.; Zuniga, J.M. Assessment of body-powered 3D printed partial finger prostheses: A case study. 3D Print. Med. 2019, 5, 7. [Google Scholar] [CrossRef]
- Cutipa-Puma, D.R.; Paredes-Madrid, L.; Paredes-Madrid, W. A low-cost robotic hand prosthesis with apparent haptic sense controlled by electroencephalographic signals. HardwareX 2023, 14, e00439. [Google Scholar] [CrossRef]
- Avilés-Mendoza, K.; Gaibor-León, N.G.; Asanza, V.; Lorente-Leyva, L.L.; Peluffo-Ordóñez, D.H. A 3D-printed, bionic hand powered by EMG signals and controlled by an online neural network. Biomimetics 2023, 8, 255. [Google Scholar] [CrossRef]
- Zuniga, J.M.; Carson, A.M.; Peck, J.M.; Kalina, T.; Srivastava, R.M.; Peck, K. The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthet. Orthot. Int. 2017, 41, 205–209. [Google Scholar] [CrossRef]
- Tothy, J. Adjustowrap Gripper Arm (3DPX-020278). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020278 (accessed on 20 December 2024).
- do Carmo, T.A.; Cabette, R.E.S.; Gomes, R.G. Prototype of robotic mechanical prosthesis of upper limb at low cost. Int. J. Adv. Eng. Res. Sci. 2020, 7, 22–26. Available online: https://journal-repository.com/index.php/ijaers/article/view/1820 (accessed on 20 December 2024). [CrossRef]
- Cuellar, J.S.; Plettenburg, D.; Zadpoor, A.A.; Breedveld, P.; Smit, G. Design of a 3D-printed hand prosthesis featuring articulated bio-inspired fingers. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Tothy, J. Cyborg Beast (3DPX-020267). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020267 (accessed on 20 December 2024).
- University of Nebraska Omah. Cyborg Beast. College of Education, Health, and Human Sciences, Biomechanics Core Facility. Available online: https://www.unomaha.edu/college-of-education-health-and-human-sciences/biomechanics-core-facility/research/cyborg-beast/index.php (accessed on 20 December 2024).
- Tothy, J. e-NABLE Phoenix Hand v3. NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020260 (accessed on 20 December 2024).
- Tothy, J. El Medallo Bionic Arm (3DPX-020276). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020276 (accessed on 20 December 2024).
- Tothy, J. Flexy Arm (3DPX-020281). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020281 (accessed on 20 December 2024).
- Tothy, J. Flexy-Hand 2 (3DPX-020268). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020268 (accessed on 20 December 2024).
- Tothy, J. Forefinger Gripper Hand (3DPX-020275). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020275 (accessed on 20 December 2024).
- Gretsch, K.F.; Lather, H.D.; Peddada, K.V.; Deeken, C.R.; Wall, L.B.; Goldfarb, C.A. Development of novel 3D-printed robotic prosthetic for transradial amputees. Prosthet. Orthot. Int. 2016, 40, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Medina-Coello, P.; Salvador-Domínguez, B.; Badesa, F.J.; Rodríguez Corral, J.M.; Plastrotmann, H.; Morgado-Estévez, A. Anthropomorphic robotic hand prosthesis developed for children. Biomimetics 2024, 9, 401. [Google Scholar] [CrossRef]
- Tothy, J. K1 Hand (3DPX-020271). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020271 (accessed on 20 December 2024).
- e-NABLE. Introducing the New 3D-printed Kinetic Hand Design. e-NABLE. Available online: http://enablingthefuture.org/2020/11/13/introducing-the-new-3d-printed-kinetic-hand-design/ (accessed on 20 December 2024).
- Thingiverse. 3D Printed Kinetic Hand. Available online: https://www.thingiverse.com/thing:4618922 (accessed on 20 December 2024).
- NIH 3D Print Exchange. Kinetic Hand (3DPX-020261). Available online: https://3d.nih.gov/entries/3DPX-020261 (accessed on 20 December 2024).
- Tothy, J. Knick Finger. NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020290 (accessed on 20 December 2024).
- NIH 3D Print Exchange. Kwawu Arm (3DPX-020299). Available online: https://3d.nih.gov/entries/3DPX-020299 (accessed on 20 December 2024).
- O’Neal, B. Designer Creates 3D Printed Elbow & Upper Arm Prosthetic with Hand Actuation for Boy Without Elbow. 3DPrint.com. Available online: https://3dprint.com/90944/3d-printed-elbow-prosthetic/ (accessed on 20 December 2024).
- e-NABLE Hub. Ody Hand. Available online: https://hub.e-nable.org/s/e-nable-devices/wiki/Ody+Hand (accessed on 20 December 2024).
- NIH 3D Print Exchange. Osprey Hand (3DPX-020262). Available online: https://3d.nih.gov/entries/3DPX-020262 (accessed on 20 December 2024).
- e-NABLE. Osprey Hand. e-NABLE Hub. Available online: https://hub.e-nable.org/s/e-nable-devices/wiki/Osprey+Hand (accessed on 20 December 2024).
- Tothy, J. Phoenix Reborn Arm (3DPX-020277). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020277 (accessed on 20 December 2024).
- NIH 3D Print Exchange. Po Arm. Available online: https://3d.nih.gov/entries/3DPX-020282 (accessed on 20 December 2024).
- Tothy, J. Talon Hand (3DPX-020273). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020273 (accessed on 20 December 2024).
- Esposito, D.; Savino, S.; Andreozzi, E.; Cosenza, C.; Niola, V.; Bifulco, P. The “Federica” hand. Bioengineering 2021, 8, 128. [Google Scholar] [CrossRef]
- Tothy, J. The Paraglidar (3DPX-020270). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020270 (accessed on 20 December 2024).
- Tothy, J. The UnLimbited Arm v2.1 (3DPX-020264). NIH 3D Print Exchange. Available online: https://3d.nih.gov/entries/3DPX-020264 (accessed on 20 December 2024).
- Printables. e-NABLE UnLimbited Phoenix Hand. Available online: https://www.printables.com/model/129817-e-nable-unlimbited-phoenix-hand (accessed on 20 December 2024).
- 3D-Creator. UnLimbited Phoenix Hand. Thingiverse. Available online: https://www.thingiverse.com/thing:1674320 (accessed on 20 December 2024).
- Victoria Hand Project. The Victoria Hand Project Overview. Available online: https://www.victoriahandproject.com/_files/ugd/4add4b_5a1b2ae776144eb796cdff1caa110a32.pdf (accessed on 20 December 2024).
- Vijayan, A.; Bhatia, V.; Arora, S.; Gupta, S. Completely digitally fabricated custom functional finger prosthesis. J. Indian Prosthodont. Soc. 2023, 23, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Victoria Hand Project. Victoria Hand Project: Summer 2024 Overview. Available online: https://www.victoriahandproject.com/_files/ugd/4add4b_f3ad92ce9e8045e88c87ba3698395386.pdf (accessed on 20 December 2024).
- Mohammadi, A.; Lavranos, J.; Zhou, H.; Mutlu, R.; Alici, G.; Tan, Y.; Choong, P.; Oetomo, D. A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities. PLoS ONE 2020, 15, e0232766. [Google Scholar] [CrossRef]
- Yang, Y.; Fermüller, C.; Li, Y.; Aloimonos, Y. Grasp type revisited: A modern perspective on a classical feature for vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 18–20 June 2015; pp. 725–733. [Google Scholar] [CrossRef]
- e-NABLE. Device ratings guide. e-NABLE Hub. Available online: https://hub.e-nable.org/s/e-nable-devices/wiki/Device+Ratings+Guide (accessed on 20 December 2024).
- Ultimaker. How to 3D Print with PLA and Which Materials to Choose. Available online: https://ultimaker.com/learn/how-to-3d-print-with-pla-and-which-materials-to-choose (accessed on 20 December 2024).
- Instructables. Thermoforming 3D Printed PLA for use in Prosthetic Devices. Available online: https://www.instructables.com/Thermoforming-3D-Printed-PLA-for-Use-in-Prostethic/ (accessed on 20 December 2024).
- Ten Kate, J.; Smit, G.; Breedveld, P. 3D-printed upper limb prostheses: A review. Disabil. Rehabil. Assist. Technol. 2017, 12, 300–314. [Google Scholar] [CrossRef]
- Simon, J. Raptor Reloaded. e-NABLE Hub. 2022. Available online: https://hub.e-nable.org/s/e-nable-devices/wiki/Raptor+Reloaded (accessed on 20 December 2024).
- Thomas, A.; Muñecas, T. A rehabilitation protocol for the use of a 3D-printed prosthetic hand in pediatrics: A case report. J. Hand Ther. 2023, 36, 967–973. [Google Scholar] [CrossRef]
- Safari, M.R.; Rowe, P.; McFadyen, A.; Buis, A. Hands-off and hands-on casting consistency of amputee below-knee sockets using magnetic resonance imaging. Sci. World J. 2013, 2013, 486146. [Google Scholar] [CrossRef]
- Tay, F.E.H.; Manna, M.A.; Liu, L.X. A CASD/CASM method for prosthetic socket fabrication using the FDM technology. Rapid Prototyp. J. 2002, 8, 258–262. [Google Scholar] [CrossRef]
- Paterno, L.; Ibrahimi, M.; Gruppioni, E.; Menciassi, A.; Ricotti, L. Sockets for limb prostheses: A review of existing technologies and open challenges. IEEE Trans. Biomed. Eng. 2018, 65, 1996–2010. [Google Scholar] [CrossRef] [PubMed]
- Victoria Hand Project. The Project. Available online: https://www.victoriahandproject.com/the-project (accessed on 20 December 2024).
- Esquenazi, A. Amputation rehabilitation and prosthetic restoration: From surgery to community reintegration. Disabil. Rehabil. 2004, 26, 831–836. [Google Scholar] [CrossRef] [PubMed]
- American Orthotic & Prosthetic Association. Amputation Data from Community Hospitals. Almanac. 2016. Available online: https://issuu.com/americanoandp/docs/april_2016_almanac (accessed on 20 December 2024).
Type of Prothesis | Type of Actuation | Type of Control | Weight (g) | Force Distribution | Flexor | Extensor | |
---|---|---|---|---|---|---|---|
Adjustowrap Gripper Arm [10] | Arm | - | - | - | - | - | |
Avilés-Mendoza et al.’s hand [8] | Hand | SM | EMG | 429 | Equally | Gripper mechanism | |
Carmo et al.’s hand [11] | Hand | SM | EMG | - | - | Cables | |
Cuellar et al.’s hand [12] | Hand | BP | SH | 92 | Equally | Nylon cables | |
Cuellar et al.’s non-assembly hand [1] | Hand | BP | SH | - | Distributed | Bowden cable | Leaf springs |
Cutipa-Puma et al.’s arm [7] | Arm | SM | EEG | 1000 | Distributed | Thick thread or nylon, elastic band | |
Cyborg Beast [3,13,14] | Hand | BP | Wrist | 184.2 | Equally | Non-elastic cords | |
e-NABLE Phoenix Hand v3 [15] | Hand | BP | Wrist | - | - | - | |
El Medallo Bionic Arm [16] | Arm | - | EMG | - | - | - | |
Flexy Arm [17] | Arm | BP | Elbow | Equally | Cables/cords | CM | |
Flexy-Hand 2 [18] | Hand | BP | Wrist | - | Equally | Cables/cords | CM |
Forefinger Gripper Hand [19] | Hand | - | - | Elastic cords | |||
Gretsch et al.’s arm [20] | Arm | EP (SM) | Shoulder | 240 | Distributed | Elastic cord | |
HandBot-Kid [21] | Hand | MM | Independent electric actuators | 328 | Distributed | Four-bar linkage mechanism | |
K1 Hand [22] | Hand | BP | Wrist | - | Equally | Cables/cords | Elastic cords |
Kinetic Hand [23,24,25] | Hand | BP | Wrist | - | - | Elastic cords | |
Knick Finger [26] | Finger | - | - | - | - | - | |
Kwawu Arm [27] | Arm | BP | Elbow | - | - | - | |
Mark V [4] | Hand | BP | EMG | 320–800 | - | Cables | |
McCabe’s Elbow and Upper Arm [28] | Arm | SM for elbow movement | EMG | SM: 142 | - | - | |
Ody Hand [29] | Hand | BP | Wrist | Evenly | Elastic cords | Springs | |
Osprey Hand [30,31] | Hand | BP | Wrist | - | Cables | ||
Phoenix Reborn Arm [32] | Arm | BP | Elbow | - | - | Elastic cord | |
Po Arm [33] | Arm | BP | Elbow | ||||
Talon Hand V3 [34] | Hand | BP | Wrist | - | Distributed | Elastic cords | Springs |
The “Federica” hand [35] | Hand | SM | FMG | 200 | (D1, D2, D3: 25%, D3, D5: 12.5%) | Inextensible cables, extensor aided by low-elasticity spring | |
The Paraglider [36] | Hand | BP | Wrist | - | - | Elastic cords | |
Unlimbited Arm v2.1 [37] | Arm | BP | Elbow | - | - | - | |
Unlimbited Phoenix Hand [38,39] | Hand | BP | Wrist | 148 | Distributed | - | |
VC300 Hand [40] | Arm | BP | Shoulder | Hand: 287 System: 675 | - | Stainless steel internal phalanges | |
Vijayan et al.’s finger [41] | Finger | BP | Wrist | - | - | Elastic cords and nylon strings | |
VO 300 Hand [42] | Arm | BP | Shoulder | Hand: 291 System: 695 | - | Stainless steel internal phalanges | |
X-Limb [43] | Hand | DC MM | EMG | 253 | Distributed | Cable | Spring-like compliance in the flexure joints |
Young et al.’s hand [6] | Finger | BP | MCP | - | - | Nylon string and elastic cord | |
Zuniga et al.’s hand [9] | Upper arm | PA | Unaffected shoulder | 830 | - | Cables |
ROM | Grasp | |||||||
---|---|---|---|---|---|---|---|---|
Finger | Thumb | Power | Precision | Grip Strength | ||||
MCPJ (°) | PIPJ (°) | DIPJ (°) | IPJ (°) | Rotation | C/S/H | P/T/L | ||
Adjustowrap Gripper Arm [10] | 0–90 | 0–100 | 0–70 | 0–80 | Y (120° ROM) | Y/Y/Y | Y/Y/Y | Strong |
Avilés-Mendoza et al.’s hand [8] | 0–90 | 0–100 | 0–60 | 0–80 | Y (90° ROM) | Y/Y/Y | Y/Y/Y | Strong (up to 23 N) |
Carmo et al.’s hand [11] | - | - | - | - | - | -/-/- | -/-/- | Strong |
Cuellar et al.’s hand [12] | 0–70 | 0–45 | 0–45 | - | Y (45° ROM) | Y/Y/Y | Y/Y/Y | Strong (pinch force: 16 N) |
Cuellar et al.’s non-assembly hand [1] | 0–90 | 0–100 | 0–70 | 0–45 | - | -/-/- | -/-/- | Weak (pinch force: 6 N) |
Cutipa-Puma et al.’s arm [7] | 0–90 | 0–90 | 0–70 | 0–50 | Y (90° ROM) | Y/Y/Y | Y/Y/Y | Moderate (daily task) |
Cyborg Beast [3,13,14] | 0–50 | 0–90 | 0–70 | 0–30 | No | Y/-/Y | Y/-/- | Strong |
e-NABLE Phoenix Hand v3 [15] | 0–90 | 0–80 | 0–70 | 0–30 | Y (45° ROM) | Y/Y/Y | Y/Y/Y | Strong |
El Medallo Bionic Arm [16] | 0–90 | 0–75 | 0–70 | 0–55 | Y (60° ROM) | Y/Y/Y | Y/Y/Y | Strong |
Flexy Arm [17] | 0–60 | 0–60 | 0–70 | 0–45 | No | Y/Y/Y | Y/-/- | Weak |
Flexy-Hand 2 [18] | 0–80 | 0–80 | 0–70 | 0–45 | Y (30° ROM) | Y/Y/Y | Y/Y/Y | Weak |
Forefinger Gripper Hand [19] | 0–45 | 0–45 | 0–45 | 0–50 | Y (30° ROM) | Y/-/- | Y/-/- | Moderate |
Gretsch et al.’s arm [20] | 0–90 | 0–90 | 0–70 | 0–70 | Y (45° ROM) | Y/Y/Y | -/-/- | Weak |
HandBot-Kid [21] | 0–90 | 0–90 | 0–70 | 0–70 | Y | Y/Y/Y | Y/Y/Y | Moderate (power grip: 10.2 N) |
K1 Hand [22] | 0–70 | 0–70 | 0–60 | 0–60 | Y (45° ROM) | Y/Y/Y | Y/Y/Y | Moderate |
Kinetic Hand [23,24,25] | 0–90 | 0–100 | 0–70 | 0–80 | Y | Y/Y/Y | Y/Y/- | Moderate |
Knick Finger [26] | 0–90 | 0–100 | 0–70 | - | - | -/-/- | -/-/- | Moderate |
Kwawu Arm [27] | 0–45 | 0–60 | 0–60 | 0–45 | Y (45° ROM) | Y/Y/Y | Y/Y/Y | Moderate |
Mark V [4] | 0–90 | 0–90 | 0–45 | 0–45 | Y (90° ROM)) | Y/Y/Y | Y/Y/Y | - |
McCabe’s Elbow and Upper Arm [28] | 0–90 | 0–100 | 0–70 | 0–80 | Y (120° ROM) | Y/-/Y | Y/Y/- | - |
Ody Hand [29] | 0–60 | 0–60 | 0–45 | NA | Y (30° ROM) | Y/Y/Y | -/-/- | Strong |
Osprey Hand [30,31] | 0–70 | 0–60 | 0–10 | 0–30 | Y (30° ROM) | Y/Y/Y | Y/Y/Y | Moderate |
Phoenix Reborn Arm [32] | 0–90 | 0–90 | 0–70 | 0–45 | Y | Y/Y/Y | Y/Y/Y | Moderate |
Po Arm [33] | 0–45 | 0–30 | 0–30 | 0–15 | Y (60° ROM) | Y/Y/Y | Y/Y/Y | Moderate |
Talon Hand V3 [34] | 0–90 | 0–100 | 0–70 | 0–45 | Y | Y/Y/Y | Y/Y/Y | - |
The “Federica” hand [35] | 0–80 | 0–90 | 0–70 | 0–45 | Y (30° ROM) | Y/Y/Y | Y/Y/Y | Weak (mean grip force: 8.8 N) |
The Paraglider [36] | 0–80 | 0–80 | 0–70 | 0–50 | Y (45° ROM) | Y/Y/Y | Y/Y/- | Strong |
Unlimbited Arm v2.1 [37] | 0–45 | 0–45 | 0–45 | 0–45 | No | Y/Y/Y | Y/-/- | Moderate |
Unlimbited Phoenix Hand [38,39] | 0–70 | 0–60 | 0–30 | 0–30 | Y (20° ROM) | Y/Y/Y | Y/Y/Y | - |
VC300 Hand [40] | 0–90 | 0–100 | 0–70 | 0–80 | Y (120° ROM) | Y/Y/Y | Y/Y/- | Strong |
Vijayan et al.’s finger [41] | 0–90 | 0–90 | 0–70 | - | - | -/-/- | -/-/- | Moderate |
VO 300 Hand [42] | 0–90 | 0–100 | 0–70 | 0–80 | Y (120° ROM) | Y/Y/Y | Y/Y/- | Strong |
X-Limb [43] | 0–90 | 0–100 | 0–30 | 0–80 | Y (60° ROM) | Y/Y/Y | Y/Y/Y | Strong (power grip: 21.5 N, pinch grip: 10.2 N) |
Young et al.’s hand [6] | 0–40 | 0–90 | 0–30 | - | - | -/-/- | -/-/- | - |
Zuniga et al.’s hand [9] | 0–90 | 0–100 | - | 0–80 | -/-/- | -/-/- | -/-/- | Weak (power grip: 8.3 N, pinch grip: 3.9 N) |
Printer | Material | Printing Cost (USD) | Printing and Assembly | |
---|---|---|---|---|
Adjustowrap Gripper Arm [10] | - | - | Moderate | - |
Avilés-Mendoza et al.’s hand [8] | Ender 3 Max printer | PLA | High (<USD 600) | - |
Carmo et al.’s hand [11] | Anet A8 printer | PLA, nylon monofilament cables | High (BRL 2000) | Moderate |
Cuellar et al.’s hand [12] | MakerGear M2 desktop 3D printer | PLA, TPU | High (USD 300) | - |
Cuellar et al.’s non-assembly hand [1] | - | PLA | Low | Difficult |
Cutipa-Puma et al.’s arm [7] | - | PLA | Low | Difficult |
Cyborg Beast [3,13,14] | MakerBot Replicator 2, Ultimaker 2 | PLA, ABS | Low | Difficult |
e-NABLE Phoenix Hand v3 [15] | MakerBot Replicator 2, Ultimaker 2, Prusa i3 MK3S | PETG or PLA | Low | Easy |
El Medallo Bionic Arm [16] | - | - | Low | Difficult |
Flexy Arm [17] | - | PLA | Low | Easy |
Flexy-Hand 2 [18] | - | - | Low | Easy |
Forefinger Gripper Hand [19] | Ultimaker S5 3D printer | TPU | Low (<USD 40) | Easy |
Gretsch et al.’s arm [20] | - | ABS | - | Easy |
HandBot-Kid [21] | Ultimaker 2 extended | Aluminium, PLA, UV resin | Low (USD 20) | Easy |
K1 Hand [22] | Makerbot Replicator 2X and Ultimaker 2 | - | Low | Easy |
Kinetic Hand [23,24,25] | - | PLA, TPU filament | - | Easy |
Knick Finger [26] | - | - | Low (USD 12) | Easy |
Kwawu Arm [27] | - | - | Low | Moderate |
Mark V [4] | - | - | Moderate | Moderate |
McCabe’s Elbow and Upper Arm [28] | - | - | - | Moderate |
Ody Hand [29] | - | - | Low | Moderate |
Osprey Hand [30,31] | - | PLA or ABS, nylon monofilament | High | Moderate |
Phoenix Reborn Arm [32] | Low | - | Moderate | Moderate |
Po Arm [33] | - | - | Low | Moderate |
Talon Hand V3 [34] | MakerBot Replicator 2, Ultimaker 2 | - | Moderate (~USD 100) | Moderate |
The “Federica” hand [35] | - | PLA | - | Moderate |
The Paraglider [36] | FlashForge Guider II printer | - | High (USD 200) | Moderate |
Unlimbited Arm v2.1 [37] | - | - | Low | Moderate |
Unlimbited Phoenix Hand [38,39] | MakerBot Replicator 2, Ultimaker 2 | PLA, PET | Low | Moderate |
VC300 Hand [40] | - | - | Low | Moderate |
Vijayan et al.’s finger [41] | - | Photopolymer resin | Low | Moderate |
VO 300 Hand [42] | - | - | - | Moderate |
X-Limb [43] | Makerbot Replicator 2X | TPU | High (USD 200) | Moderate |
Young et al.’s hand [6] | - | PLA | - | - |
Zuniga et al.’s hand [9] | MakerBot Replicator 2 | PLA, ABS, nylon 680 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dababneh, S.; Dababneh, N.; Xie, C.; Henchi, H.; Efanov, J.I. Shaping the Future of Upper Extremity Prostheses Through 3D Printing. Prosthesis 2025, 7, 39. https://doi.org/10.3390/prosthesis7020039
Dababneh S, Dababneh N, Xie C, Henchi H, Efanov JI. Shaping the Future of Upper Extremity Prostheses Through 3D Printing. Prosthesis. 2025; 7(2):39. https://doi.org/10.3390/prosthesis7020039
Chicago/Turabian StyleDababneh, Said, Nadine Dababneh, Chenrui Xie, Hanna Henchi, and Johnny I. Efanov. 2025. "Shaping the Future of Upper Extremity Prostheses Through 3D Printing" Prosthesis 7, no. 2: 39. https://doi.org/10.3390/prosthesis7020039
APA StyleDababneh, S., Dababneh, N., Xie, C., Henchi, H., & Efanov, J. I. (2025). Shaping the Future of Upper Extremity Prostheses Through 3D Printing. Prosthesis, 7(2), 39. https://doi.org/10.3390/prosthesis7020039