Can Machine Learning Algorithms Contribute to the Initial Screening of Hip Prostheses and Early Identification of Outliers?
Abstract
:1. Introduction
2. Materials and Methods
3. ML Statistical Analyses
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pivec, R.; Johnson, A.J.; Mears, S.C.; Mont, M.A. Hip arthroplasty. Lancet 2012, 380, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Cafri, G.; Graves, S.E.; Sedrakyan, A.; Fan, J.; Calhoun, P.; de Steiger, R.N.; Cuthbert, A.; Lorimer, M.; Paxton, E.W. Postmarket surveillance of arthroplasty device components using machine learning methods. Pharmacoepidemiol. Drug Saf. 2019, 28, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Graves, S.E.; de Steiger, R.N.; Davidson, D.C.; Ryan, P.; Miller, L.N.; Cashman, K. What is the benefit of introducing new hip and knee prostheses? J Bone Jt. Surg Am. 2011, 93 (Suppl. 3), 51–54. [Google Scholar] [CrossRef]
- Shah, J.S.; Maisel, W.H. Recalls and safety alerts affecting automated external defibrillators. JAMA 2006, 296, 655–660. [Google Scholar] [CrossRef]
- Resnic, F.S. Postmarketing surveillance of medical devices—Filling in the gaps. N. Engl. J. Med. 2012, 366, 875. [Google Scholar] [CrossRef]
- Steiger, R.N.d.; Miller, L.N.; Davidson, D.C.; Ryan, P.; Graves, S.E. Joint registry approach for identification of outlier prostheses. Acta Orthop. 2013, 84, 348–352. [Google Scholar] [CrossRef]
- Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2020 Annual Report; AOA: Adelaide, Australia, 2020. [Google Scholar]
- Mäkelä, K.; Hailer, N.P. Different, yet strong together: The Nordic Arthroplasty Register Association (NARA). Acta Orthop. 2021, 92, 635–637. [Google Scholar] [CrossRef]
- American Joint Replacement Registry. American Joint Registry 2020 Annual Report; American Joint Replacement Registry: Adelaide, Australia, 2020. [Google Scholar]
- Swedish Hip Arthroplasty Register. Swedish Hip Arthroplasty Register Annual Report; Swedish Hip Arthroplasty Register: Gothenburg, Sweden, 2019. [Google Scholar]
- Guccione, A.A.; Felson, D.T.; Anderson, J.J.; Anthony, J.M.; Zhang, Y.; Wilson, P.; Kelly-Hayes, M.; Wolf, P.A.; Kreger, B.E.; Kannel, W.B. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am. J. Public Health 1994, 84, 351–358. [Google Scholar] [CrossRef]
- The Norwegian Arthroplasty Registry. Annual Report; The Norwegian Arthroplasty Registry: Bergen, Norway, 2020. [Google Scholar]
- Krucoff, M.W.; Sedrakyan, A.; Normand, S.-L.T. Bridging Unmet Medical Device Ecosystem Needs with Strategically Coordinated Registries Networks. Jama 2015, 314, 1691–1692. [Google Scholar] [CrossRef]
- Sedrakyan, A.; Campbell, B.; Graves, S.; Cronenwett, J.L. Surgical registries for advancing quality and device surveillance. Lancet 2016, 388, 1358–1360. [Google Scholar] [CrossRef] [PubMed]
- Hardoon, S.; Lewsey, J.; Gregg, P.; Reeves, B.; van der Meulen, J. Continuous monitoring of the performance of hip prostheses. J. Bone Jt. Surg. Br. Vol. 2006, 88, 716–720. [Google Scholar] [CrossRef]
- Paxton, E.W.; Cafri, G.; Nemes, S.; Lorimer, M.; Kärrholm, J.; Malchau, H.; Graves, S.E.; Namba, R.S.; Rolfson, O. An international comparison of THA patients, implants, techniques, and survivorship in Sweden, Australia, and the United States. Acta Orthop. 2019, 90, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Ishwaran, H.; Kogalur, U.B.; Kogalur, M.U.B. Package ‘randomForestSRC’. Breast 2021, 6, 1–132. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Schmid, M.; Wright, M.N.; Ziegler, A. On the use of Harrell’s C for clinical risk prediction via random survival forests. Expert Syst. Appl. 2016, 63, 450–459. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Ishwaran, H.; Kogalur, U.B.; Chen, X.; Minn, A.J. Random survival forests for high-dimensional data. Stat. Anal. Data Min. ASA Data Sci. J. 2011, 4, 115–132. [Google Scholar] [CrossRef]
- Dietrich, S.; Floegel, A.; Troll, M.; Kühn, T.; Rathmann, W.; Peters, A.; Sookthai, D.; Von Bergen, M.; Kaaks, R.; Adamski, J. Random Survival Forest in practice: A method for modelling complex metabolomics data in time to event analysis. Int. J. Epidemiol. 2016, 45, 1406–1420. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Gorodeski, E.Z.; Minn, A.J.; Lauer, M.S. High-dimensional variable selection for survival data. J. Am. Stat. Assoc. 2010, 105, 205–217. [Google Scholar] [CrossRef]
- Cafri, G.; Calhoun, P.; Fan, J. High dimensional variable selection with clustered data: An application of random multivariate survival forests for detection of outlier medical device components. J. Stat. Comput. Simul. 2019, 89, 1410–1422. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Therneau, T.M.; Grambsch, P.M.; Therneau, T.M.; Grambsch, P.M. The Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Van Buuren, S.; Groothuis-Oudshoorn, K.J. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Siroky, D.S. Navigating random forests and related advances in algorithmic modeling. Stat. Surv. 2009, 3, 147–163. [Google Scholar] [CrossRef]
- Broadhurst, D.I.; Kell, D.B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006, 2, 171–196. [Google Scholar] [CrossRef]
Patient Characteristics | Level | n (%) |
---|---|---|
Age | <65 | 57,757 (35.36%) |
65–74 | 59,499 (36.42%) | |
≥75 | 46,100 (28.22%) | |
ASA score | <3 | 103,688 (63.47%) |
≥3 | 58,990 (36.11%) | |
Not Available | 678 (0.42%) | |
BMI | <25 | 32,799 (20.08%) |
25–29.9 | 56,701 (34.71%) | |
≥30 | 63,482 (38.86%) | |
Not Available | 10,374 (6.35%) | |
Gender | Female | 86,981 (53.25%) |
Male | 76,375 (46.75%) | |
Device attributes | ||
Bearing surface | Modern | 157,229 (96.25%) |
Non-modern | 6127 (3.75%) | |
Head size | <32 | 14,090 (8.63%) |
≥32 | 149,252 (91.37%) | |
Not Available | 14 (≈0.0%) |
Component | Descriptive Information | First Stage | Second Stage | Comparator (Other Total) | ||
---|---|---|---|---|---|---|
N Revised | N Total | Obs. Years | Revisions/100 Obs. Years (95% CI) | HR—Adjusted for Age and Gender, p-Value | ||
Acetabular | ||||||
Device I | 21 | 300 | 587.63 | 3.57 (3.29, 3.91) | 3.42 (2.23, 5.26) p < 0.001 | 0.95 (0.92, 0.98) |
Device II | 5 | 59 | 228.78 | 2.18 (2.03, 2.36) | 3.14 (1.30, 7.54) p = 0.01 | 0.95 (0.92, 0.98) |
Device III | 35 | 760 | 1735.65 | 2.02 (1.93, 2.11) | 2.09 (1.50, 2.92) p < 0.001 | 0.95 (0.92, 0.98) |
Femoral stem | ||||||
Device IV | 8 | 71 | 245.37 | 3.26 (3.01, 3.56) | 4.34 (2.17, 8.68) p < 0.001 | 0.95 (0.92, 0.98) |
Device V | 18 | 288 | 458.74 | 3.92 (3.59, 4.31) | 3.28 (2.06, 5.21) p < 0.001 | 0.95 (0.92, 0.98) |
Device VI | 48 | 1266 | 2270.99 | 2.11 (2.04, 2.2) | 1.88 (1.42, 2.51) p < 0.001 | 0.94 (0.91, 0.98) |
Device VII | 13 | 195 | 666.55 | 1.95 (1.86, 2.05) | 2.55 (1.48, 4.40) p < 0.001 | 0.95 (0.92, 0.98) |
Device VIII | 17 | 320 | 374.66 | 4.54 (4.25, 4.87) | 3.02 (1.87, 4.86) p < 0.001 | 0.95 (0.92, 0.98) |
Device IX | 28 | 561 | 1438.76 | 1.95 (1.86, 2.04) | 2.22 (1.53, 3.22) p < 0.001 | 0.95 (0.92, 0.98) |
Device X | 16 | 199 | 589.0 | 2.72 (2.54, 2.91) | 3.32 (2.03, 5.42) p < 0.001 | 0.95 (0.92, 0.98) |
Component | Descriptive Information | Random Survival Forest | Regularised/Unregularised Cox | ||
---|---|---|---|---|---|
N Revised | N Total | Obs. Years | Minimal Depth Rank Permutation p-Value | p-Value | |
Acetabular | |||||
Device I | 21 | 300 | 587.63 | 8 0.019 | - |
Device II | 5 | 59 | 228.78 | 20 0.079 | 0.773 |
Device III | 35 | 760 | 1735.65 | 15 0.039 | - |
Femoral stem | |||||
Device IV | 8 | 71 | 245.37 | 2 0.009 | 0.009 |
Device V | 18 | 288 | 458.74 | 14 0.029 | <0.001 |
Device VI | 48 | 1266 | 2270.99 | 21 0.089 | - |
Device VII | 13 | 195 | 666.55 | 13 0.029 | 0.434 |
Device VIII | 17 | 320 | 374.66 | 3 0.009 | 0.012 |
Device IX | 28 | 561 | 1438.76 | 5 0.009 | - |
Device X | 16 | 199 | 589.0 | 1 0.009 | - |
Component | Descriptive Information | Random Survival Forest | Regularised/ Unregularised Cox | ||||
---|---|---|---|---|---|---|---|
N Revised | N Total | Obs. Years | Revisions/ 100 Obs. Years (95% CI) | HR—Adjusted for Age and Gender, p-Value | Minimal Depth Rank Permutation p-Value | p-Value | |
Acetabular | |||||||
Device XI | 62 | 1444 | 3466.08 | 1.79 (1.37, 2.29) | 1.93 (1.50, 2.48) p < 0.001 | 4 0.009 | - |
Device XII | 132 | 5048 | 9640.42 | 1.37 (1.15, 1.62) | 1.26 (1.06, 1.50) p = 0.008 | - | 0.005 |
Device XIII | 40 | 1063 | 2559.11 | 1.56 (1.12, 2.13) | 1.66 (1.22, 2.27) p = 0.001 | 18 0.039 | 0.052 |
Femoral stem | |||||||
Device XIV | 14 | 250 | 804.43 | 1.74 (0.95, 2.92) | 2.21 (1.30, 3.73) p = 0.003 | 17 0.039 | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghadirinejad, K.; Graves, S.; de Steiger, R.; Pratt, N.; Solomon, L.B.; Taylor, M.; Hashemi, R. Can Machine Learning Algorithms Contribute to the Initial Screening of Hip Prostheses and Early Identification of Outliers? Prosthesis 2024, 6, 744-752. https://doi.org/10.3390/prosthesis6040052
Ghadirinejad K, Graves S, de Steiger R, Pratt N, Solomon LB, Taylor M, Hashemi R. Can Machine Learning Algorithms Contribute to the Initial Screening of Hip Prostheses and Early Identification of Outliers? Prosthesis. 2024; 6(4):744-752. https://doi.org/10.3390/prosthesis6040052
Chicago/Turabian StyleGhadirinejad, Khashayar, Stephen Graves, Richard de Steiger, Nicole Pratt, Lucian B. Solomon, Mark Taylor, and Reza Hashemi. 2024. "Can Machine Learning Algorithms Contribute to the Initial Screening of Hip Prostheses and Early Identification of Outliers?" Prosthesis 6, no. 4: 744-752. https://doi.org/10.3390/prosthesis6040052
APA StyleGhadirinejad, K., Graves, S., de Steiger, R., Pratt, N., Solomon, L. B., Taylor, M., & Hashemi, R. (2024). Can Machine Learning Algorithms Contribute to the Initial Screening of Hip Prostheses and Early Identification of Outliers? Prosthesis, 6(4), 744-752. https://doi.org/10.3390/prosthesis6040052