Inter-Limb Asymmetry in the Kinematic Parameters of the Long Jump Approach Run in Female Paralympic-Level Class T63/T64 Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Acquisition
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bragaru, M.; Dekker, R.; Geertzen, J.H. Sport prostheses and prosthetic adaptations for the upper and lower limb amputees: An overview of peer reviewed literature. Prosthet. Orthot. Int. 2012, 36, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.G. Citius, altius, longius (faster, higher, longer): The biomechanics of jumping for distance. J. Biomech. 1993, 26 (Suppl. S1), 7–21. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.N.; Lishman, J.R.; Thomson, J.A. Regulation of gait in long jumping. J. Exp. Psychol. Hum. Percept. 1982, 8, 448–459. [Google Scholar] [CrossRef]
- McCosker, C.; Renshaw, I.; Polman, R.; Greenwood, D.; Davids, K. Run-up strategies in competitive long jumping: How an ecological dynamics rationale can support coaches to design individualised practice tasks. Hum. Mov. Sci. 2021, 77, 102800. [Google Scholar] [CrossRef]
- Hay, J.G. The biomechanics of the long jump. Exerc. Sport Sci. Rev. 1986, 14, 401–446. [Google Scholar] [CrossRef]
- Theodorou, A.S.; Panoutsakopoulos, V.; Exell, T.A.; Argeitaki, P.; Paradisis, G.P.; Smirniotou, A. Step characteristic interaction and asymmetry during the approach phase in long jump. J. Sport. Sci. 2017, 35, 346–354. [Google Scholar] [CrossRef]
- Hay, J.G. Approach strategies in the long jump. Int. J. Sport. Biomech. 1988, 4, 114–129. [Google Scholar] [CrossRef]
- Hay, J.G.; Miller, J.A. Techniques used in the transition from approach to takeoff in the long jump. Int. J. Sport. Biomech. 1985, 1, 174–184. [Google Scholar] [CrossRef]
- Exell, T.; Theodorou, A.; Panoutsakopoulos, V. Step characteristics during long jump approach: Reliance and asymmetry considerations. In Proceedings of the XXXIV International Symposium on Biomechanics in Sports, Tsukuba, Japan, 18–22 July 2016; Ae, M., Enomoto, Y., Fujii, N., Takagi, H., Eds.; International Society of Biomechanics in Sports: Tsukuba, Japan, 2016; pp. 581–584. [Google Scholar]
- Arampatzis, A.; Brüggemann, G.-P. Mechanical energetic processes in long jump and their effect on jumping performance. New Stud. Athl. 1999, 14, 37–44. [Google Scholar]
- Ŕidkā-Drdāckā, E. A mechanical model of the long jump and its application to a technique of preparatory and takeoff phases. Int. J. Sport. Biomech. 1986, 2, 289–300. [Google Scholar] [CrossRef]
- Ramos, C.D.; Ramey, M.; Wilcox, R.R.; McNitt-Gray, J.L. Generation of linear impulse during the takeoff of the long jump. J. Appl. Biomech. 2019, 35, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Chaitidou, V.; Panoutsakopoulos, V. Long jump performance is not related to inter-limb asymmetry in force application in isometric and vertical jump tests. Biomechanics 2023, 3, 389–400. [Google Scholar] [CrossRef]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z. The effect of application of asymmetry evaluation in competitive sports: A systematic review. Phys. Act. Health 2022, 6, 257–272. [Google Scholar] [CrossRef]
- Parkinson, A.O.; Apps, C.L.; Morris, J.G.; Barnett, C.T.; Lewis, M.G.C. The calculation, thresholds and reporting of inter-limb strength asymmetry: A systematic review. J. Sport. Sci. Med. 2021, 20, 594–617. [Google Scholar] [CrossRef]
- Ličen, U.; Kozinc, Ž. The influence of inter-limb asymmetries in muscle strength and power on athletic performance: A review. Mont. J. Sport. Sci. Med. 2023, 12, 75–86. [Google Scholar] [CrossRef]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef]
- Stastny, P.; Lehnert, M.; Tufano, J.J. Muscle Imbalances: Testing and training functional eccentric hamstring strength in athletic populations. J. Vis. Exp. 2018, 135, 57508. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Chavda, S.; Turner, A. Asymmetries of the lower limb: The calculation conundrum in strength training and conditioning. Strength Cond. J. 2016, 38, 27–32. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 2008, 27, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.; Suen, A.M.; Yeung, E.W. A prospective cohort study of hamstring injuries in competitive sprinters: Preseason muscle imbalance as a possible risk factor. Br. J. Sport. Med. 2009, 43, 589–594. [Google Scholar] [CrossRef]
- Deli, C.K.; Paschalis, V.; Theodorou, A.A.; Nikolaidis, M.G.; Jamurtas, A.Z.; Koutedakis, Y. Isokinetic knee joint evaluation in track and field events. J. Strength Cond. Res. 2011, 25, 2528–2536. [Google Scholar] [CrossRef]
- Kalata, M.; Maly, T.; Hank, M.; Michalek, J.; Bujnovsky, D.; Kunzmann, E.; Zahalka, F. Unilateral and bilateral strength asymmetry among young elite athletes of various sports. Medicina 2020, 56, 683. [Google Scholar] [CrossRef]
- Maloney, S.J. The relationship between asymmetry and athletic performance: A critical review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef]
- Caldwell, S.; Trench, E.; Hoover, J.; Bucheger, N. Differences between jumping and non-jumping legs in Division III Collegiate Track and Field jumpers. J. Undergrad. Kinesiol. Res. 2006, 1, 1–7. [Google Scholar]
- Beck, O.N.; Taboga, P.; Grabowski, A.M. Sprinting with prosthetic versus biological legs: Insight from experimental data. R. Soc. Open Sci. 2022, 9, 211799. [Google Scholar] [CrossRef]
- Doyen, É.; Szmytka, F.; Semblat, J.F. A novel characterisation protocol of mechanical interactions between the ground and a tibial prosthesis for long jump. Sci. Rep. 2023, 13, 5226. [Google Scholar] [CrossRef] [PubMed]
- Burnham, R.; Newell, E.; Steadward, R. Sports medicine for the physically disabled: The Canadian team experience at the 1988 Seoul Paralympic Games. Clin. J. Sport Med. 1991, 1, 193–196. [Google Scholar] [CrossRef]
- Isakov, E.; Burger, H.; Krajnik, J.; Gregoric, M.; Marincek, C. Influence of speed on gait parameters and on symmetry in trans-tibial amputees. Prosthet. Orthot. Int. 1996, 20, 153–158. [Google Scholar] [CrossRef]
- Burkett, B.; Smeathers, J.; Barker, T. Walking and running inter-limb asymmetry for Paralympic trans-femoral amputees, a biomechanical analysis. Prosthet. Orthot. Int. 2003, 27, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Makimoto, A.; Sano, Y.; Hashizume, S.; Murai, A.; Kobayashi, Y.; Takemura, H.; Hobara, H. Ground Reaction Forces During Sprinting in Unilateral Transfemoral Amputees. J. Appl. Biomech. 2017, 33, 406–409. [Google Scholar] [CrossRef]
- World Para Athletics. World Para Athletics Classification Rules and Regulations; International Paralympic Committee: Bonn, Germany, 2023. [Google Scholar]
- Bragaru, M.; Dekker, R.; Geertzen, J.H.; Dijkstra, P.U. Amputees and sports: A systematic review. Sport. Med. 2011, 41, 721–740. [Google Scholar] [CrossRef]
- de Oliveira, F.C.L.; Williamson, S.; Ardern, C.L.; Heron, N.; van Rensburg, D.C.J.; Jansen, M.G.T.; O’Connor, S.; Schoonmade, L.; Thornton, J.; Pluim, B.M. Associations between partial foot amputation level, gait parameters, and minimum impairment criteria in para-sport: A research study protocol. Sport. Med. Health Sci. 2021, 4, 70–73. [Google Scholar] [CrossRef]
- Pailler, D.; Sautreuil, P.; Piera, J.B.; Genty, M.; Goujon, H. Evolution des prothèses des sprinters amputés de membre inférieur. Ann. Readapt. Med. Phys. 2004, 47, 374–381. [Google Scholar] [CrossRef]
- Funken, J.; Willwacher, S.; Heinrich, K.; Müller, R.; Hobara, H.; Grabowski, A.M.; Potthast, W. Three-Dimensional Takeoff Step Kinetics of Long Jumpers with and without a Transtibial Amputation. Med. Sci. Sport. Exerc. 2019, 51, 716–725. [Google Scholar] [CrossRef]
- Funken, J.; Willwacher, S.; Heinrich, K.; Hobara, H.; Grabowski, A.M.; Potthast, W. Long jumpers with and without a transtibial amputation have different three-dimensional centre of mass and joint take-off step kinematics. R. Soc. Open Sci. 2019, 6, 190107. [Google Scholar] [CrossRef]
- Nolan, L.; Lees, A. Touch-down and take-off characteristics of the long jump performance of world level above- and below-knee amputee athletes. Ergonomics 2000, 43, 1637–1650. [Google Scholar] [CrossRef]
- Nolan, L.; Patritti, B.L.; Simpson, K.J. A biomechanical analysis of the long-jump technique of elite female amputee athletes. Med. Sci. Sport. Exerc. 2006, 38, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.; Lees, A. The influence of lower limb amputation level on the approach in the amputee long jump. J. Sport. Sci. 2007, 25, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.; Patritti, B.L.; Simpson, K.J. Effect of take-off from prosthetic versus intact limb on transtibial amputee long jump technique. Prosthet. Orthot. Int. 2012, 36, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Padullés, J.M.; Torralba, M.A.; López-del Amo, J.L.; Braz, M.; Theodorou, A.; Padullés, X.; García Fresneda, A.; Fuentes de Fuentes, M.; Olsson, J.; Panoutsakopoulos, V. Kinematic characteristics of the long jump approach run in paralympic-level male limb-deficients. Eur. J. Hum. Mov. 2019, 43, 115–130. [Google Scholar]
- Simpson, K.J.; Williams, S.L.; DelRey, P.; Ciapponi, T.M.; Wen, H.L. Locomotor characteristics exhibited during Paralympic long jump competitions of classifications “Below-” and “Above-Knee Amputee”. Int. J. Appl. Sport. Sci. 2001, 13, 1–17. [Google Scholar]
- Willwacher, S.; Funken, J.; Heinrich, K.; Müller, R.; Hobara, H.; Grabowski, A.M.; Brüggemann, G.P.; Potthast, W. Elite long jumpers with below the knee prostheses approach the board slower, but take-off more effectively than non-amputee athletes. Sci. Rep. 2017, 7, 16058. [Google Scholar] [CrossRef]
- Pradon, D.; Mazure-Bonnefoy, A.; Rabita, G.; Hutin, E.; Zory, R.; Slawinski, J. The biomechanical effect of arm mass on long jump performance: A case study of a paralympic upper limb amputee. Prosthet. Orthot. Int. 2014, 38, 248–252. [Google Scholar] [CrossRef]
- Breban, S.G.; Bettella, F.; Di Marco, R.; Migliore, G.L.; Cutti, A.G.; Petrone, N. GRF analysis of two elite Paralympic sprinters in steady and resisted accelerated treadmill running. ISBS Proc. Arch. 2022, 40, 94–97. [Google Scholar]
- Sano, Y.; Makimoto, A.; Hashizume, S.; Murai, A.; Kobayashi, Y.; Takemura, H.; Hobara, H. Leg stiffness during sprinting in transfemoral amputees with running-specific prosthesis. Gait Posture 2017, 56, 65–67. [Google Scholar] [CrossRef]
- Metaxiotis, D.; García-Fresneda, A.; Theodorou, A.S.; Panoutsakopoulos, V.; Torralba Jordán, M.A.; Padullés, J.M.; Padullés, X. Gender differences in approach speed and accuracy of class T61-64 paralympic long jumpers with lower extremity amputation. Med. Dello Sport. 2021, 74 (Suppl. S1–S3), 91. [Google Scholar]
- Talukdar, K.; Harrison, C.; McGuigan, M. Intraday and inter-day reliability of sprinting kinetics in young female athletes measured using a radar gun. Meas. Phys. Educ. Exerc. Sci. 2021, 25, 266–272. [Google Scholar] [CrossRef]
- Exell, T.A.; Irwin, G.; Gittoes, M.J.; Kerwin, D.G. Implications of intra-limb variability on asymmetry analyses. J. Sport. Sci. 2012, 30, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Publishers: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Matsuwaka, S.T.; Latzka, E.W. Summer Adaptive Sports Technology, Equipment, and Injuries. Sport. Med. Arthrosc. Rev. 2019, 27, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Panoutsakopoulos, V.; Theodorou, A.S.; Fragkoulis, E.; Kotzamanidou, M.C. Biomechanical analysis of the late approach and the take off in the indoor women’s long jump. J. Hum. Sport. Exerc. 2021, 16 (Proc3), S1280–S1292. [Google Scholar] [CrossRef]
- Fletcher, J.R.; Gallinger, T.; Prince, F. How Can Biomechanics Improve Physical Preparation and Performance in Paralympic Athletes? A Narrative Review. Sports 2021, 9, 89. [Google Scholar] [CrossRef] [PubMed]
Parameter | Minimum | Maximum | Mean | SD | Skewness | Kurtosis |
---|---|---|---|---|---|---|
TBD at take-off (m) | 0.05 | 0.16 | 0.09 | 0.03 | 0.96 | 0.74 |
VappMAX (m/s) | 6.14 | 7.96 | 7.12 | 0.59 | −0.36 | −0.75 |
SVmax (m) | 1.75 | 8.54 | 5.49 | 2.13 | −0.47 | −0.33 |
SL2%ADJ (%) | −6.40 | 17.71 | 4.48 | 9.26 | −0.05 | −1.57 |
SL1%ADJ (%) | −29.61 | 14.72 | −2.74 | 15.58 | −0.51 | −1.26 |
Parameter | xPWL | xINT | t | p | d |
---|---|---|---|---|---|
SL (m) | 1.71 ± 0.13 | 1.66 ± 0.15 | 1.512 | 0.159 | 0.38 |
SF (Hz) | 3.69 ± 0.32 * | 4.09 ± 0.19 | 5.331 | <0.001 | 1.52 |
SV (m/s) | 6.37 ± 0.82 | 6.81 ± 0.72 | 2.198 | 0.050 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Fresneda, A.; Panoutsakopoulos, V.; Padullés Riu, J.-M.; Torralba Jordán, M.A.; López-del Amo, J.L.; Padullés, X.; Exell, T.A.; Kotzamanidou, M.C.; Metaxiotis, D.; Theodorou, A.S. Inter-Limb Asymmetry in the Kinematic Parameters of the Long Jump Approach Run in Female Paralympic-Level Class T63/T64 Athletes. Prosthesis 2024, 6, 146-156. https://doi.org/10.3390/prosthesis6010012
García-Fresneda A, Panoutsakopoulos V, Padullés Riu J-M, Torralba Jordán MA, López-del Amo JL, Padullés X, Exell TA, Kotzamanidou MC, Metaxiotis D, Theodorou AS. Inter-Limb Asymmetry in the Kinematic Parameters of the Long Jump Approach Run in Female Paralympic-Level Class T63/T64 Athletes. Prosthesis. 2024; 6(1):146-156. https://doi.org/10.3390/prosthesis6010012
Chicago/Turabian StyleGarcía-Fresneda, Adrián, Vassilios Panoutsakopoulos, Josep-Maria Padullés Riu, Miguel Angel Torralba Jordán, José Luís López-del Amo, Xavier Padullés, Timothy A. Exell, Mariana C. Kotzamanidou, Dimitrios Metaxiotis, and Apostolos S. Theodorou. 2024. "Inter-Limb Asymmetry in the Kinematic Parameters of the Long Jump Approach Run in Female Paralympic-Level Class T63/T64 Athletes" Prosthesis 6, no. 1: 146-156. https://doi.org/10.3390/prosthesis6010012
APA StyleGarcía-Fresneda, A., Panoutsakopoulos, V., Padullés Riu, J. -M., Torralba Jordán, M. A., López-del Amo, J. L., Padullés, X., Exell, T. A., Kotzamanidou, M. C., Metaxiotis, D., & Theodorou, A. S. (2024). Inter-Limb Asymmetry in the Kinematic Parameters of the Long Jump Approach Run in Female Paralympic-Level Class T63/T64 Athletes. Prosthesis, 6(1), 146-156. https://doi.org/10.3390/prosthesis6010012