Impact of Implant Diameter on Success and Survival of Dental Implants: An Observational Cohort Study
Abstract
:1. Introduction
- Peri-implant bone loss is affected by implant diameter.
- The width of the peri-implant soft tissue is affected by implant diameter.
2. Materials and Methods
- Two-piece Ankylos® implant (Dentsply Sirona; Mannheim, Germany).
- Implant diameter of 3.5 mm or 4.5 mm.
- Implant in situ for at least two years.
- Availability of postoperative and follow-up radiographs.
- Minimum patient age of 16 years.
- Presence or absence of bone augmentation at the implant site (single-stage approach or separate stage prior to implant placement).
- Any loading protocol (immediate, early, conventional) and healing mode (submerged, non-submerged).
- SDI group: implant diameter of 4.5 mm
- NDI group: implant diameter of 3.5 mm.
3. Results
3.1. Evaluation of Peri-Implant Bone Levels and Implant-Associated Factors
3.2. Evaluation of Peri-Implant Soft Tissues
4. Discussion
5. Conclusions
- Peri-implant crestal bone loss and soft-tissue loss were not affected by implant diameter around implants with a progressive thread design.
- The success and survival rates of NDIs were similar to those of SDIs.
- NDIs with a conical implant–abutment connection and platform switching can be recommended in selected cases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howe, M.S.; Keys, W.; Richards, D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J. Dent. 2019, 84, 9–21. [Google Scholar] [CrossRef]
- Ali, Z.; Baker, S.R.; Shahrbaf, S.; Martin, N.; Vettore, M.V. Oral health-related quality of life after prosthodontic treatment for patients with partial edentulism: A systematic review and meta-analysis. J. Prosthet. Dent. 2019, 121, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Adler, L.; Buhlin, K.; Jansson, L. Survival and complications: A 9- to 15-year retrospective follow-up of dental implant therapy. J. Oral Rehabil. 2020, 47, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Brägger, U.; Karoussis, I.; Persson, R.; Pjetursson, B.; Salvi, G.; Lang, N. Technical and biological complications/failures with single crowns and fixed partial dentures on implants: A 10-year prospective cohort study. Clin. Oral Implants Res. 2005, 16, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of dental implant surface modifications on osseointegration. Biomed. Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef]
- Griggs, J.A. Dental implants. Dent. Clin. N. Am. 2017, 61, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Elangovan, S.; Kramer, K.W.; Blanchette, D.; Dawson, D.V. Effect of alveolar ridge preservation after tooth extraction: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 950–958. [Google Scholar] [CrossRef]
- Canellas, J.V.D.S.; Soares, B.N.; Ritto, F.G.; Vettore, M.V.; Vidigal Júnior, G.M.; Fischer, R.G.; Medeiros, P.J.D. What grafting materials produce greater alveolar ridge preservation after tooth extraction? A systematic review and network meta-analysis. J. Craniomaxillofac. Surg. 2021, 49, 1064–1071. [Google Scholar] [CrossRef]
- Atieh, M.A.; Alsabeeha, N.H.; Payne, A.G.; Duncan, W.; Faggion, C.M.; Esposito, M. Interventions for replacing missing teeth: Alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst. Rev. 2015, 2015, CD010176. [Google Scholar] [CrossRef]
- Van der Weijden, F.; Dell’Acqua, F.; Slot, D.E. Alveolar bone dimensional changes of post-extraction sockets in humans: A systematic review. J. Clin. Periodontol. 2009, 36, 1048–1058. [Google Scholar] [CrossRef]
- Wimmer, L.; Petrakakis, P.; El-Mahdy, K.; Herrmann, S.; Nolte, D. Implant-prosthetic rehabilitation of patients with severe horizontal bone deficit on mini-implants with two-piece design-retrospective analysis after a mean follow-up of 5 years. Int. J. Implant Dent. 2021, 7, 71. [Google Scholar] [CrossRef]
- French, D.; Grandin, H.M.; Ofec, R. Retrospective cohort study of 4591 dental implants: Analysis of risk indicators for bone loss and prevalence of peri-implant mucositis and peri-implantitis. J. Periodontol. 2019, 90, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Weigl, P.; Strangio, A. The impact of immediately placed and restored single-tooth implants on hard and soft tissues in the anterior maxilla. Eur. J. Oral Implantol. 2016, 9 (Suppl. S1), S89–S106. [Google Scholar] [PubMed]
- Khoury, F.; Hanser, T. Three-dimensional vertical alveolar ridge augmentation in the posterior maxilla: A 10-year clinical study. Int. J. Oral Maxillofac. Implants 2019, 34, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Schiegnitz, E.; Al-Nawas, B. Narrow-diameter implants: A systematic review and meta-analysis. Clin. Oral Implants Res. 2018, 29 (Suppl. S16), 21–40. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.O.; Schiegnitz, E.; Al-Nawas, B. Systematic review on success of narrow-diameter dental implants. Int. J. Oral Maxillofac. Implants 2014, 29, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Telles, L.H.; Portella, F.F.; Rivaldo, E.G. Longevity and marginal bone loss of narrow-diameter implants supporting single crowns: A systematic review. PLoS ONE 2019, 14, e0225046. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, S.W.; Lee, J.Y. Narrow-diameter versus regular-diameter dental implants for mandibular overdentures: A systematic review and meta-analysis. J. Prosthodont. 2023; epub ahead of print. [Google Scholar] [CrossRef]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implants 1986, 1, 11–25. [Google Scholar]
- Papaspyridakos, P.; Chen, C.J.; Singh, M.; Weber, H.P.; Gallucci, G.O. Success criteria in implant dentistry: A systematic review. J. Dent. Res. 2012, 91, 242–248. [Google Scholar] [CrossRef]
- Danesh-Sani, S.A.; Loomer, P.M.; Wallace, S.S. A comprehensive clinical review of maxillary sinus floor elevation: Anatomy, techniques, biomaterials and complications. Br. J. Oral Maxillofac. Surg. 2016, 54, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Benic, G.I.; Hämmerle, C.H. Horizontal bone augmentation by means of guided bone regeneration. Periodontology 2000 2014, 66, 13–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cai, M.; Yang, J.; Aldhohrah, T.; Wang, Y. Immediate versus early or conventional loading dental implants with fixed prostheses: A systematic review and meta-analysis of randomized controlled clinical trials. J. Prosthet. Dent. 2019, 122, 516–536. [Google Scholar] [CrossRef] [PubMed]
- Troiano, G.; Lo Russo, L.; Canullo, L.; Ciavarella, D.; Lo Muzio, L.; Laino, L. Early and late implant failure of submerged versus non-submerged implant healing: A systematic review, meta-analysis and trial sequential analysis. J. Clin. Periodontol. 2018, 45, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Pitman, J.; Seyssens, L.; Christiaens, V.; Cosyn, J. Immediate implant placement with or without immediate provisionalization: A systematic review and meta-analysis. J. Clin. Periodontol. 2022, 49, 1012–1023. [Google Scholar] [CrossRef]
- Silness, J.; Loe, H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. Acta Odontol. Scand. 1964, 22, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Garnick, J.J.; Silverstein, L. Periodontal probing: Probe tip diameter. J. Periodontol. 2000, 71, 96–103. [Google Scholar] [CrossRef]
- Saxer, U.P.; Mühlemann, H.R. Motivation und Aufklärung [Motivation and education]. SSO Schweiz. Monatsschr. Zahnheilkd. 1975, 85, 905–919. [Google Scholar]
- Zweers, J.; van Doornik, A.; Hogendorf, E.A.; Quirynen, M.; Van der Weijden, G.A. Clinical and radiographic evaluation of narrow- vs. regular-diameter dental implants: A 3-year follow-up. A retrospective study. Clin. Oral Implants Res. 2015, 26, 149–156. [Google Scholar] [CrossRef]
- Pieri, F.; Forlivesi, C.; Caselli, E.; Corinaldesi, G. Narrow- (3.0 mm) Versus Standard-Diameter (4.0 and 4.5 mm) Implants for Splinted Partial Fixed Restoration of Posterior Mandibular and Maxillary Jaws: A 5-Year Retrospective Cohort Study. J. Periodontol. 2017, 88, 338–347. [Google Scholar] [CrossRef]
- Chuang, S.K.; Wei, L.J.; Douglass, C.W.; Dodson, T.B. Risk factors for dental implant failure: A strategy for the analysis of clustered failure-time observations. J. Dent. Res. 2002, 81, 572–577. [Google Scholar] [CrossRef]
- Muelas-Jiménez, M.I.; Olmedo-Gaya, M.V.; Manzano-Moreno, F.J.; Reyes-Botella, C.; Vallecillo-Capilla, M. Long-term survival of dental implants with different prosthetic loading times in healthy patients: A 5-year retrospective clinical study. J. Prosthodont. 2017, 26, 99–106. [Google Scholar] [CrossRef]
- Lemmerman, K.J.; Lemmerman, N.E. Osseointegrated dental implants in private practice: A long-term case series study. J. Periodontol. 2005, 76, 310–319. [Google Scholar] [CrossRef]
- Romanos, G.E.; Lau, J.; Delgado-Ruiz, R.; Javed, F. Primary stability of narrow-diameter dental implants with a multiple condensing thread design placed in bone with and without osteotomes: An in vitro study. Clin. Implant Dent. Relat. Res. 2020, 22, 409–414. [Google Scholar] [CrossRef]
- Romanos, G.E.; Bastardi, D.J.; Kakar, A.; Moore, R.; Delgado-Ruiz, R.A.; Javed, F. In vitro comparison of resonance frequency analysis devices to evaluate implant stability of narrow diameter implants at varying drilling speeds in dense artificial bone blocks. Clin. Implant Dent Relat. Res. 2019, 21, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Carrascal, N.; Salomó-Coll, O.; Gilabert-Cerdà, M.; Farré-Pagés, N.; Gargallo-Albiol, J.; Hernández-Alfaro, F. Effect of implant macro-design on primary stability: A prospective clinical study. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e214–e221. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, C.; Lang, N.P.; Rangert, B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clin. Oral Implants Res. 2006, 17 (Suppl. S2), 2–7. [Google Scholar] [CrossRef] [PubMed]
- Zipprich, H.; Weigl, P.; Ratka, C.; Lange, B.; Lauer, H.C. The micromechanical behavior of implant-abutment connections under a dynamic load protocol. Clin. Implant Dent. Relat. Res. 2018, 20, 814–823. [Google Scholar] [CrossRef]
- Zipprich, H.; Miatke, S.; Hmaidouch, R.; Lauer, H.C. A new experimental design for bacterial microleakage investigation at the implant-abutment interface: An in vitro study. Int. J. Oral Maxillofac. Implants 2016, 31, 37–44. [Google Scholar] [CrossRef]
- Pranskunas, M.; Poskevicius, L.; Juodzbalys, G.; Kubilius, R.; Jimbo, R. Influence of peri-implant soft tissue condition and plaque accumulation on peri-implantitis: A systematic review. J. Oral Maxillofac. Res. 2016, 7, e2. [Google Scholar] [CrossRef]
- Zheng, Z.; Ao, X.; Xie, P.; Jiang, F.; Chen, W. The biological width around implant. J. Prosthodont. Res. 2021, 65, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Suárez-López Del Amo, F.; Lin, G.H.; Monje, A.; Galindo-Moreno, P.; Wang, H.L. Influence of soft tissue thickness on peri-implant marginal bone loss: A systematic review and meta-analysis. J. Periodontol. 2016, 87, 690–699. [Google Scholar] [CrossRef]
- French, D.; Larjava, H.; Tallarico, M. Retrospective study of 1087 anodized implants placed in private practice: Risk indicators associated with implant failure and relationship between bone levels and soft tissue health. Implant Dent. 2018, 27, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Zweers, J.; Thomas, R.Z.; Slot, D.E.; Weisgold, A.S.; Van der Weijden, F.G. Characteristics of periodontal biotype, its dimensions, associations and prevalence: A systematic review. J. Clin. Periodontol. 2014, 41, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.M.; Lintel-Höping, N.; Hammächer, C.; Kasaj, A.; Tamm, M.; Hanisch, O. The gingival biotype: Measurement of soft and hard tissue dimensions—A radiographic morphometric study. J. Clin. Periodontol. 2013, 40, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Scribante, A. Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review. Appl. Sci. 2022, 12, 3250. [Google Scholar] [CrossRef]
- Vale, G.C.; Mayer, M.P.A. Effect of probiotic Lactobacillus rhamnosus by-products on gingival epithelial cells challenged with Porphyromonas gingivalis. Arch. Oral Biol. 2021, 128, 105174. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Cuggia, G.; Scribante, A. Domiciliary Use of Chlorhexidine vs. Postbiotic Gels in Patients with Peri-Implant Mucositis: A Split-Mouth Randomized Clinical Trial. Appl. Sci. 2022, 12, 2800. [Google Scholar] [CrossRef]
Total | NDI Group | SDI Group | ||
---|---|---|---|---|
Number of patients | n | 194 | 185 | 56 |
Age of patients, years | Median | 52 | 51 | 54 |
IQR | 41.75–62.25 | 40–63 | 44–62 | |
Number of implants | n | 415 | 336 | 79 |
Observation period, months | Median | 80 | 80 | 78 |
IQR | 59–108 | 56.3–108 | 66–108 | |
Implant length | ||||
8.0 mm | n | 31 | 17 | 14 |
9.5 mm | n | 64 | 39 | 25 |
11.0 mm | n | 270 | 241 | 29 |
14.0 mm | n | 47 | 37 | 10 |
17.0 mm | n | 3 | 2 | 1 |
Total | NDI Group | SDI Group | ||
---|---|---|---|---|
Implants | n | 415 | 336 | 79 |
Healing modes after placement | ||||
Submerged | n | 394 | 322 | 72 |
(%) | (94.9) | (77.6) | (17.3) | |
Non-submerged | n | 19 | 13 | 6 |
(%) | (4.6) | (3.1) | (1.4) | |
Immediate placement | n | 2 | 1 | 1 |
(%) | (0.5) | (0.2) | (0.2) | |
Loading protocols after placement | ||||
Conventional | n | 378 | 313 | 65 |
(%) | (91.1) | (75.4) | (15.7) | |
Immediate | n | 11 | 7 | 4 |
(%) | (2.7) | (1.7) | (1.0) | |
Early | n | 23 | 14 | 9 |
(%) | (5.5) | (3.4) | (2.2) | |
Implant removed | n | 3 | 2 | 1 |
(%) | (0.7) | (0.5) | (0.2) |
2 Years | 5 Years | 10 Years | ||||
---|---|---|---|---|---|---|
NDI Group | SDI Group | NDI Group | SDI Group | NDI Group | SDI Group | |
Survival rate, % | 98.5 | 97.5 | 97.3 | 94.9 | 95.8 | 91.1 |
Success rate, % | 96.2 | 91.5 | 89.4 | 85.4 | 69.1 | 68.4 |
Peri-implant bone loss, n | ||||||
≤2 mm | 252 a | 55 a | 140 a | 42 a | 39 a | 15 a |
2–4 mm | 5 a | 3 a | 8 a | 3 a | 3 a | 1 a |
>4 mm | 5 a | 2 a | 4 a | 2 a | 4 a | 1 a |
Peri-implant bone loss, % | ||||||
≤2 mm | 96.2 a | 91.6 a | 92.1 a | 89.4 a | 84.8 a | 88.2 a |
2–4 mm | 1.9 a | 5 a | 5.3 a | 6.4 a | 6.5 a | 5.9 a |
>4 mm | 1.9 a | 3.4 a | 2.6 a | 4.2 a | 8.7 a | 5.9 a |
NDI Group | SDI Group | ||||
---|---|---|---|---|---|
Uncovering | Recall | Uncovering | Recall | ||
Sulcus Bleeding Index (SBI) | Grade 0 | 86%a | 77% a | 82% a | 75% a |
Grade 1 | 11% a | 19% a | 11% a | 17% a | |
Grade 2 | 3% a | 4% a | 7% a | 8% a | |
Grade 3 | 0% a | 0% a | 0% a | 0% a | |
Grades 4/5 | 0% a | 0% a | 0% a | 0% a | |
Plaque Index (PI) | Loading | Recall | Loading | Recall | |
Grade 0 | 87% a | 72% a | 86% a | 64% a | |
Grade 1 | 11% a | 25% a | 9% a | 30% a | |
Grade 2 | 2% a | 3% a | 5% a | 6% a | |
Grade 3 | 0% a | 0% a | 0 (0%) a | 0% a | |
Width of Attached mucosa | Fitting appointment | Recall | Fitting appointment | Recall | |
Implants, % | 99% a | 97% a | 98% a | 97% a | |
Median, mm | 2.75 a | 2 a | 2.5 a | 2 a | |
IQR, mm | 1.88–3 a | 1.5–3 a | 1–3 a | 1–3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanos, G.E.; Schesni, A.; Nentwig, G.-H.; Winter, A.; Sader, R.; Brandt, S. Impact of Implant Diameter on Success and Survival of Dental Implants: An Observational Cohort Study. Prosthesis 2023, 5, 888-897. https://doi.org/10.3390/prosthesis5030062
Romanos GE, Schesni A, Nentwig G-H, Winter A, Sader R, Brandt S. Impact of Implant Diameter on Success and Survival of Dental Implants: An Observational Cohort Study. Prosthesis. 2023; 5(3):888-897. https://doi.org/10.3390/prosthesis5030062
Chicago/Turabian StyleRomanos, Georgios E., Aigerim Schesni, Georg-Hubertus Nentwig, Anna Winter, Robert Sader, and Silvia Brandt. 2023. "Impact of Implant Diameter on Success and Survival of Dental Implants: An Observational Cohort Study" Prosthesis 5, no. 3: 888-897. https://doi.org/10.3390/prosthesis5030062
APA StyleRomanos, G. E., Schesni, A., Nentwig, G. -H., Winter, A., Sader, R., & Brandt, S. (2023). Impact of Implant Diameter on Success and Survival of Dental Implants: An Observational Cohort Study. Prosthesis, 5(3), 888-897. https://doi.org/10.3390/prosthesis5030062