Effects of Disinfectants Used for COVID-19 Protection on the Color and Translucency of Acrylic Denture Teeth
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. L*, a* and b* Parameters
3.2. ΔΕ*ab and ΔΕ00 Diffcerences
3.3. Translucency Parameters and Differences
3.4. Correlation Analyses
4. Discussion
5. Conclusions
- Most of the solutions had no significant effect on the color of teeth compared to the control (water) group. Water affected only slightly the color coordinates of teeth, resulting in a change of 0.16 to 0.25 ΔE*ab units or 0.11 to 0.15 ΔE*00 units.
- Three of the solutions, glutaraldehyde 2.6%, chlorhexidine 0.12% and Listerine Naturals, affected significantly the color of the teeth compared to the water group.
- The highest color change was found when teeth were immersed in chlorhexidine 0.12% or glutaraldehyde 2.6% at 60 min and 180 min, reaching the maximum of 1.81 ΔE*ab units or 0.93 ΔE00 units.
- Immersion of teeth in the solutions had no significant effect on their translucency, regardless of the type or immersion time. The changes in translucency were always below the 50%:50% perceptibility threshold.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Johns Hopkins University Coronavirus Center. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at John Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 8 June 2020).
- Paolone, G.; Mazzitelli, C.; Formiga, S.; Kaitsas, F.; Breschi, L.; Mazzoni, A.; Tete, G.; Polizzi, E.; Gherlone, E.; Cantatore, G. One-year impact of COVID-19 pandemic on Italian dental professionals: A cross-sectional survey. Minerva Dent. Oral Sci. 2022, 71, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Koch-Heier, J.; Hoffmann, H.; Schindler, M.; Lussi, A.; Planz, O. Inactivation of SARS-CoV-2 through Treatment with the Mouth Rinsing Solutions ViruProX® and BacterX® Pro. Microorganisms 2021, 9, 521. [Google Scholar] [CrossRef]
- Stawarz-Janeczek, M.; Kryczyk-Poprawa, A.; Muszyńska, B.; Opoka, W.; Pytko-Polończyk, J. Disinfectants Used in Stoma-tology and SARS-CoV-2 Infection. Eur. J. Dent. 2021, 15, 388–400. [Google Scholar] [PubMed]
- Di Fiore, A.; Monaco, C.; Granata, S.; Stellini, E. Disinfection Protocols During the COVID-19 Pandemic and Their Effects on Prosthetic Surfaces: A Systematic Review. Int. J. Prosthodont. 2022, 35, 343–349. [Google Scholar] [CrossRef]
- Abdelrahman, Z.; Li, M.; Wang, X. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respira-tory Viruses. Front. Immunol. 2020, 11, 552909. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Mateos-Moreno, M.; Mira, A.; Ausina-Márquez, V.; Ferrer, M. Oral antiseptics against coronavirus: In-vitro and clinical evidence. J. Hosp. Infect. 2021, 113, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Carrouel, F.; Gonçalves, L.S.; Conte, M.P.; Campus, G.; Fisher, J.; Fraticelli, L.; Gadea-Deschamps, E.; Ottolenghi, L.; Bour-geois, D. Antiviral Activity of Reagents in Mouth Rinses against SARS-CoV-2. J. Dent. Res. 2021, 100, 124–132. [Google Scholar] [CrossRef]
- Vergara-Buenaventura, A.; Castro-Ruiz, C. Use of mouthwashes against COVID-19 in dentistry. Br. J. Oral Maxillofac. Surg. 2020, 58, 924–927. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Peña-Cardelles, J.F.; Salgado-Peralvo, A.O.; Robles, F.; Ordonez-Fernandez, E.; Ruiz, S.; Végh, D. Viru-cidal activity of different mouthwashes against the salivary load of SARS-CoV2: A narrative review. Healthcare 2022, 10, 469. [Google Scholar] [CrossRef]
- Bitencourt, S.B.; Catanoze, I.A.; da Silva, E.V.F.; dos Santos, P.H.; dos Santos, D.M.; Turcio, K.H.L.; Guiotti, A.M. Effect of acidic beverages on surface roughness and color stability of artificial teeth and acrylic resin. J. Adv. Prosthodont. 2020, 12, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, T.; Dogan, A.; Dogan, O.M.; Demir, H. The Bond Strength of a Highly Cross-linked Denture Tooth to Denture Base Polymers: A Comparative Study. J. Adhes. Dent. 2011, 13, 85–92. [Google Scholar] [CrossRef]
- Arima, T.; Murata, H.; Hamad, T. The effects of cross-linking agents on the water sorption and solubility characteristics of denture base resin. J. Oral Rehabil. 1996, 23, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Assunção, W.G.; Barão, V.A.; Pita, M.S.; Goiato, M.C. Effect of polymerization methods and thermal cycling on color stability soft acrylic resin denture teeth. J. Prosthet. Dent. 2009, 102, 385–392. [Google Scholar] [CrossRef]
- Phoenix, R.D. Denture base resins. In Anusavice K. Phillips’ Science of Dental Materials; Saunders: St. Louis, MO, USA, 2003; p. 742. [Google Scholar]
- Al-Qarni, F.D.; Goodacre, C.J.; Kattadiyil, M.T.; Baba, N.Z.; Paravina, R.D. Stainability of acrylic resin materials used in CAD-CAM and conventional complete dentures. J. Prosthet. Dent. 2020, 123, 880–887. [Google Scholar] [CrossRef]
- Barsby, M. A denture base resin with low water absorption. J. Dent. 1992, 20, 240–244. [Google Scholar] [CrossRef]
- Tuna, S.H.; Keyf, F.; Gumus, H.O.; Uzun, C. The Evaluation of Water Sorption/Solubility on Various Acrylic Resins. Eur. J. Dent. 2008, 2, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanha, N.H.; Pavarina, A.C.; Jorge, J.H.; Vergani, C.E.; Machado, A.L.; Giampaolo, E.T. The effect of long-term disin-fection procedures on hardness property of resin denture teeth. Gerodontology 2012, 29, e571–e576. [Google Scholar] [CrossRef] [Green Version]
- Raszewski, Z.; Nowakowska, D.; Więckiewicz, W.; Nowakowska-Toporowska, A. The Effect of Chlorhexidine Disinfectant Gels with Anti-Discoloration Systems on Color and Mechanical Properties of PMMA Resin for Dental Applications. Polymers 2021, 13, 1800. [Google Scholar] [CrossRef]
- Ma, T.; Johnson, G.H.; Gordon, G.E. Effects of chemical disinfectants on the surface characteristics and color of denture resins. J. Prosthet. Dent. 1997, 77, 197–204. [Google Scholar] [CrossRef]
- Da Silva, P.M.B.; Acosta, E.J.T.R.; Jacobina, M.; Pinto, L.; Porto, V.C. Effect of repeated immersion solution cycles on the color stability of denture tooth acrylic resins. J. Appl. Oral Sci. 2011, 19, 623–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piskin, B.; Sipahi, C.; Akin, H. Effect of Different Chemical Disinfectants on Color Stability of Acrylic Denture Teeth. J. Prosthodont. 2014, 23, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.Y.; Masri, R.; Romberg, E.; Driscoll, C.F. The effect of various disinfectants on dental shade guides. J. Prosthet. Dent. 2014, 112, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Formiga, S.; De Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Goracci, C.; Cantatore, G.; Vichi, A. Color stability of resin-based composites: Staining procedures with liquids—A narrative review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef]
- Koksal, T.; Dikbas, I. Color Stability of Different Denture Teeth Materials against Various Staining Agents. Dent. Mater. J. 2008, 27, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisani, M.X.; Macedo, A.P.; Paranhos, H.d.F.O.; Silva, C.H. Effect of experimental Ricinus communis solution for denture cleaning on the properties of acrylic resin teeth. Braz. Dent. J. 2012, 23, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Moon, A.; Powers, J.M.; Kiat-Amnuay, S. Color Stability of Denture Teeth and Acrylic Base Resin Subjected Daily to Various Consumer Cleansers. J. Esthet. Restor. Dent. 2014, 26, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, E.A.; Altintas, S.H.; Turgut, S. Effects of cigarette smoke and denture cleaners on the surface roughness and color stability of different denture teeth. J. Prosthet. Dent. 2014, 112, 241–248. [Google Scholar] [CrossRef]
- Kurtulmus-Yilmaz, S.; Deniz, S.T. Evaluation of staining susceptibility of resin artificial teeth and stain removal efficacy of denture cleansers. Acta Odontol. Scand. 2014, 72, 811–818. [Google Scholar] [CrossRef]
- Polychronakis, N.C.; Polyzois, G.L.; E Lagouvardos, P.; Papadopoulos, T.D. Effects of cleansing methods on 3-D surface roughness, gloss and color of a polyamide denture base material. Acta Odontol. Scand. 2014, 73, 353–363. [Google Scholar] [CrossRef]
- Tieh, M.T.; Waddell, J.N.; Choi, J.J.E. Optical Properties and Color Stability of Denture Teeth—A Systematic Review. J. Prosthodont. 2022, 31, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.R. The CIE 1976 Color-Difference Formulae. Color Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Johnston, W.; Ma, T.; Kienle, B.H. Translucency parameter of colorants for maxillofacial prostheses. Int. J. Prosthodont. 1995, 8, 79–86. [Google Scholar] [PubMed]
- Salas, M.; Lucena, C.; Herrera, L.J.; Yebra, A.; Della Bona, A.; Pérez, M.M. Translucency thresholds for dental materials. Dent. Mater. 2018, 34, 1168–1174. [Google Scholar] [CrossRef]
- Lagouvardos, P.E.; Pissis, P.; Kyritsis, A.; Daoukaki, D. Water sorption and water-induced molecular mobility in dental composite resins. J. Mater. Sci. Mater. Med. 2003, 14, 753–759. [Google Scholar] [CrossRef]
- Santos, C.; Clarke, R.L.; Braden, M.; Guitian, F.; Davy, K.W.M. Water absorption characteristics of dental composites in-corporating hydroxyapatite filler. Biomaterials 2002, 23, 1897–1904. [Google Scholar] [CrossRef]
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; de Oliveira Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde:behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 2004, 37, 790–802. [Google Scholar] [CrossRef]
- Patel, A.; Sethuraman, R.; Prajapati, P.; Patel, J.; Naveen, Y.G. A comparative analysis of staining characteristics of mouth-rinses on provisional acrylic resin: An in vitro study. J. Interdiscip. Dent. 2013, 3, 167–173. [Google Scholar]
- Jones, C.G. Chlorhexidine: Is it still the gold standard? Periodontology 2000, 15, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Van Swaaij, B.W.M.; van der Weijden, G.A.F.; Bakker, E.W.P.; Graziani, F.; Slot, D.E. Does chlorhexidine mouthwash, with an anti-discoloration system, reduce tooth surface discoloration without losing its efficacy? A systematic review and meta-analysis. Int. J. Dent. Hyg. 2020, 18, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Divnic-Resnik, T.; Shen, J.J.; Nguyen, J.V.T.; Lu, D.W.; Miletic, V. Effects of bioflavonoid-containing mouth rinses on optical properties of tooth-coloured dental restorative materials. Sci. Rep. 2022, 12, 9944. [Google Scholar] [CrossRef] [PubMed]
- Ertürk-Avunduk, A.T.; Aksu, S.; Delikan, E. The Effects of Mouthwashes on the Color Stability of Resin-Based Restorative Materials. Odovtos -Int. J. Dent. Sci. 2021, 23, 91–102. [Google Scholar] [CrossRef]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2018, 31, 103–112. [Google Scholar] [CrossRef]
- Ghinea, R.; Pérez, M.M.; Herrera, L.J.; Rivas, M.J.; Yebra, A.; Paravina, R.D. Color difference thresholds in dental ceramics. J. Dent. 2010, 38 (Suppl. 2), e57–e64. [Google Scholar] [CrossRef]
- Polychronakis, N.; Polyzois, G.; Lagouvardos, P.; Andreopoulos, A.; Ngo, H.C. Long-term microwaving of denture base materials: Effects on dimensional, color and translucency stability. J. Appl. Oral Sci. 2018, 26, e20170536. [Google Scholar] [CrossRef]
- Yu, B.; Ahn, J.-S.; Lee, Y.-K. Measurement of translucency of tooth enamel and dentin. Acta Odontol. Scand. 2009, 67, 57–64. [Google Scholar] [CrossRef]
Material/Lot (Abbrev *) Code | Concentration, Composition, pH | Manufacturer |
---|---|---|
Ethanol (ETH)-1 | 78%, pH = 6.8 | |
2-Propanol (PROP)-2 | 75%, pH = 7.0 | |
Sodium hypochlorite (NaOCl)-3 | 1%, pH = 9.5 | |
Hydrogen peroxide (H2O2)-4 | 0.5%, pH = 6.0 | |
Glutaraldehyde/D20712S (GLUT)-5 | 2.6%, pH = 6.24 | Laboratories ANIOS 59260 Lezennes, France |
Chlorhexidine gluconate (CHX)-6 | 0,12%, pH = 6.25 | |
Povidone-iodine (PVP-I)-7 | 1%, pH = 5.8 | |
Listerine Naturals/230035330 (LIST)-8 | Aqua, sorbitol, propylene glycol, sodium lauryl sulfate, poloxamer 407, sodium saccharine, eucalyptol, benzoic acid, sodium benzoate, methyl salicylate, thymol, menthol, pH = 3.64 | Johnson & Johnson GmbH D-41470 Neuss, DE, Germany |
Distilled water (WAT)-9 | pH = 7.08 | |
Optostar (OPT)/1913536681 | Crosslinked PMMA copolymer, inorganic fillers, pigments | Heraeus Kulzer GmbH, Leipziger Str. 263450 Hanau, Germany |
L* | a* | b* | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Solution | 0 | 3′ | 60′ | 180′ | 0 | 3′ | 60′ | 180′ | 0 | 3′ | 60′ | 180′ |
1-ETH | 59.29 ± 0.31 | 59.62 ± 0.34 | 59.53 ± 0.38 | 59.76 ± 0.3 | 1.47 ± 0.1 | 1.44 ± 0.08 | 1.38 ± 0.12 | 1.25 ± 0.1 | 8.58 ± 0.47 | 8.65 ± 0.34 | 8.68 ± 0.38 | 8.60 ± 0.35 |
2-PROP | 58.87 ± 0.81 | 58.76 ± 0.65 | 58.89 ± 0.66 | 58.9 ± 0.72 | 1.41 ± 0.14 | 1.34 ± 0.1 | 1.26 ± 0.17 | 1.32 ± 0.14 | 8.48 ± 0.45 | 8.46 ± 0.44 | 8.47 ± 0.44 | 8.51 ± 0.45 |
3-NaOCl | 58.59 ± 0.88 | 58.46 ± 0.64 | 58.22 ± 1.38 | 58.67 ± 0.86 | 1.55 ± 0.28 | 1.45 ± 0.35 | 1.48 ± 0.33 | 1.47 ± 0.32 | 8.83 ± 0.42 | 8.79 ± 0.46 | 8.75 ± 0.61 | 8.74 ± 0.44 |
4-H2O2 | 58.83 ± 1.01 | 58.43 ± 0.47 | 58.84 ± 0.88 | 58.55 ± 0.75 | 1.34 ± 0.13 | 1.38 ± 0.18 | 1.3 ± 0.15 | 1.27 ± 0.14 | 8.40 ± 0.36 | 8.49 ± 0.37 | 8.46 ± 0.37 | 8.46 ± 0.35 |
5-GLUT | 58.4 ± 0.89 | 58.02 ± 0.53 | 57.15 ± 2.07 | 57.82 ± 1.13 | 1.70 ± 0.12 | 1.59 ± 0.11 | 1.69 ± 0.19 | 1.62 ± 0.12 | 7.59 ± 0.25 | 7.56 ± 0.25 | 7.95 ± 0.5 | 7.62 ± 0.23 |
6-CHX | 56.15 ± 1.19 | 57.09 ± 0.62 | 57.24 ± 1.01 | 56.38 ± 1.35 | 1.66 ± 0.21 | 1.64 ± 0.2 | 1.56 ± 0.11 | 1.55 ± 0.14 | 7.52 ± 0.57 | 7.46 ± 0.47 | 7.52 ± 0.4 | 7.74 ± 0.46 |
7-PVP-I | 57.76 ± 1.00 | 57.42 ± 0.77 | 58.00 ± 0.93 | 58.00 ± 0.88 | 1.48 ± 0.15 | 1.57 ± 0.09 | 1.58 ± 0.1 | 1.61 ± 0.09 | 7.93 ± 0.25 | 8.12 ± 0.54 | 8.05 ± 0.4 | 8.10 ± 0.41 |
8-LIST | 57.43 ± 0.97 | 58.34 ± 0.58 | 57.41 ± 1.41 | 57.94 ± 1.19 | 1.67 ± 0.16 | 1.65 ± 0.1 | 1.61 ± 0.11 | 1.69 ± 0.09 | 7.88 ± 0.21 | 8.00 ± 0.18 | 8.23 ± 0.51 | 8.08 ± 0.32 |
9-WAT | 59.12 ± 0.41 | 58.91 ± 0.35 | 59.19 ± 0.45 | 59.17 ± 0.43 | 1.45 ± 0.11 | 1.44 ± 0.11 | 1.43 ± 0.08 | 1.40 ± 0.10 | 8.63 ± 0.39 | 8.61 ± 0.40 | 8.58 ± 0.41 | 8.59 ± 0.40 |
Solution | ΔE*ab 3 Min | 60 Min | 180 Min | +Stats | ΔΕ00 3 Min | 60 Min | 180 Min | +Stats |
---|---|---|---|---|---|---|---|---|
1-ETH | 0.57 ± 0.39 | 0.57 ± 0.34 | 0.71 ± 0.45 | abc | 0.35 ± 0.28 | 0.39 ± 0.25 | 0.51 ± 0.28 | abc |
2-PROP | 0.64 ± 0.49 | 0.61 ± 0.50 | 0.75 ± 0.49 | abc | 0.38 ± 0.21 | 0.42 ± 0.22 | 0.41 ± 0.24 | abc |
3-NaOCl | 0.85 ± 0.73 | 1.00 ± 0.91 | 0.90 ± 0.80 | abc | 0.47 ± 0.32 | 0.52 ± 0.41 | 0.45 ± 0.36 | abc |
4-H2O2 | 0.79 ± 0.47 | 0.26 ± 0.21 | 0.49 ± 0.44 | ab | 0.40 ± 0.20 | 0.18 ± 0.12 | 0.28 ± 0.18 | ab |
5-GLUT | 0.73 ± 0.61 | 1.81 ± 2.06 | 1.15 ± 1.24 | bc | 0.41 ± 0.31 | 0.93 ± 1.03 | 0.58 ± 0.58 | bc |
6-CHX | 1.17 ± 0.76 | 1.65 ± 0.89 | 1.69 ± 1.40 | c | 0.64 ± 0.32 | 0.83 ± 0.41 | 0.92 ± 0.69 | c |
7-PVP-I | 0.96 ± 0.87 | 0.71 ± 0.82 | 1.13 ± 0.94 | abc | 0.52 ± 0.41 | 0.42 ± 0.37 | 0.62 ± 0.42 | bc |
8-LIST | 1.25 ± 0.94 | 1.36 ± 1.33 | 1.32 ± 1.08 | bc | 0.61 ± 0.42 | 0.72 ± 0.67 | 0.66 ± 0.51 | bc |
9-WAT | 0.25 ± 0.13 | 0.16 ± 0.06 | 0.22 ± 0.12 | a | 0.12 ± 0.06 | 0.11 ± 0.04 | 0.15 ± 0.06 | a |
Code-Abbrev | TPab 0 Min | 3 Min | 60 Min | 180 Min | TP00 0 Min | 3 Min | 60 Min | 180 Min |
---|---|---|---|---|---|---|---|---|
1-ETH | 1.09 ± 0.34 | 0.67 ± 0.57 | 0.98 ± 0.13 | 0.99 ± 0.26 | 0.95 ± 0.15 | 0.75 ± 0.25 | 1.07 ± 0.17 | 0.99 ± 0.22 |
2-PROP | 0.97 ± 0.20 | 1.09 ± 0.40 | 0.72 ± 0.96 | 0.91 ± 0.75 | 1.03 ± 0.21 | 1.00 ± 0.23 | 0.82 ± 0.37 | 0.95 ± 0.29 |
3-NaOCl | 0.77 ± 0.18 | 0.81 ± 0.42 | 1.27 ± 0.21 | 0.89 ± 0.42 | 0.87 ± 0.23 | 0.65 ± 0.14 | 0.91 ± 0.13 | 0.78 ± 0.25 |
4-H2O2 | 0.66 ± 1.11 | 0.99 ± 0.88 | 0.86 ± 1.06 | 0.89 ± 0.89 | 0.85 ± 0.53 | 0.88 ± 0.52 | 0.83 ± 0.69 | 0.78 ± 0.51 |
5-GLUT | 2.80 ± 0.82 | 3.16 ± 0.82 | 2.80 ± 0.55 | 2.46 ± 0.94 | 1.91 ± 0.39 | 2.11 ± 0.40 | 2.03 ± 0.28 | 1.85 ± 0.44 |
6-CHX | 2.84 ± 0.68 | 3.01 ± 0.56 | 2.76 ± 2.05 | 2.93 ± 1.44 | 2.09 ± 0.44 | 2.19 ± 0.30 | 2.18 ± 0.28 | 2.12 ± 0.64 |
7-PVP-I | 2.28 ± 0.85 | 2.47 ± 0.63 | 2.98 ± 0.77 | 2.61 ± 0.99 | 1.61 ± 0.43 | 1.88 ± 0.35 | 1.74 ± 0.37 | 1.95 ± 0.51 |
8-LIST | 2.35 ± 0.87 | 2.27 ± 0.96 | 2.24 ± 1.08 | 2.18 ± 1.05 | 1.83 ± 0.48 | 1.59 ± 0.57 | 1.57 ± 0.58 | 1.49 ± 0.56 |
9-WAT | 0.81 ± 0.48 | 0.80 ± 0.13 | 0.80 ± 0.14 | 0.71 ± 0.38 | 0.97 ± 0.17 | 0.96 ± 0.12 | 0.94 ± 0.09 | 0.91 ± 0.14 |
Code-Abbrev | ΔTPab 3 Min | 60 Min | 180 Min | ΔTP00 3 Min | 60 Min | 180 Min |
---|---|---|---|---|---|---|
1-ETH | −0.43 ± 0.72 | −0.11 ± 0.36 | −0.11 ± 0.45 | −0.20 ± 0.24 | 0.12 ± 0.16 | 0.04 ± 0.21 |
2-PROP | 0.12 ± 0.43 | −0.25 ± 0.83 | −0.06 ± 0.7 | −0.03 ± 0.35 | −0.21 ± 0.46 | −0.08 ± 0.32 |
3-NaOCl | 0.03 ± 0.38 | 0.5 ± 0.24 | 0.12 ± 0.42 | −0.22 ± 0.15 | 0.03 ± 0.19 | −0.09 ± 0.33 |
4-H2O2 | 0.34 ± 0.65 | 0.2 ± 1.33 | 0.23 ± 1.13 | 0.03 ± 0.46 | −0.01 ± 0.82 | −0.07 ± 0.59 |
5-GLUT | 0.36 ± 1.05 | 0.00 ± 1.00 | −0.35 ± 1.28 | 0.20 ± 0.36 | 0.12 ± 0.33 | −0.06 ± 0.55 |
6-CHX | 0.17 ± 0.91 | −0.08 ± 2.47 | 0.09 ± 1.81 | 0.10 ± 0.51 | 0.09 ± 0.50 | 0.03 ± 0.87 |
7-PVP-I | 0.2 ± 0.97 | 0.7 ± 0.98 | 0.34 ± 1.06 | 0.27 ± 0.46 | 0.14 ± 0.44 | 0.35 ± 0.58 |
8-LIST | −0.08 ± 0.25 | −0.11 ± 0.72 | −0.17 ± 0.71 | −0.25 ± 0.19 | −0.26 ± 0.35 | −0.35 ± 0.33 |
9-WAT | −0.01 ± 0.15 | −0.03 ± 0.21 | −0.06 ± 0.24 | −0.01 ± 0.15 | −0.03 ± 0.21 | −0.06 ± 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polychronakis, N.; Mikeli, A.; Lagouvardos, P.; Polyzois, G. Effects of Disinfectants Used for COVID-19 Protection on the Color and Translucency of Acrylic Denture Teeth. Prosthesis 2023, 5, 102-112. https://doi.org/10.3390/prosthesis5010009
Polychronakis N, Mikeli A, Lagouvardos P, Polyzois G. Effects of Disinfectants Used for COVID-19 Protection on the Color and Translucency of Acrylic Denture Teeth. Prosthesis. 2023; 5(1):102-112. https://doi.org/10.3390/prosthesis5010009
Chicago/Turabian StylePolychronakis, Nick, Aikaterini Mikeli, Panos Lagouvardos, and Gregory Polyzois. 2023. "Effects of Disinfectants Used for COVID-19 Protection on the Color and Translucency of Acrylic Denture Teeth" Prosthesis 5, no. 1: 102-112. https://doi.org/10.3390/prosthesis5010009
APA StylePolychronakis, N., Mikeli, A., Lagouvardos, P., & Polyzois, G. (2023). Effects of Disinfectants Used for COVID-19 Protection on the Color and Translucency of Acrylic Denture Teeth. Prosthesis, 5(1), 102-112. https://doi.org/10.3390/prosthesis5010009