Periodontal Therapy Using Bioactive Glasses: A Review
Abstract
:1. Introduction
2. Conventional Treatment
3. Materials for Periodontal Therapy
- (i)
- Autologous bone. This is the name given to bone that is harvested from the patient and used elsewhere in their own body to repair some sort of defect. It is considered to be the “gold standard” material for use in bone repair.
- (ii)
- Allografts. The term which is applied to the situation where bone is obtained from donors other than the patient themselves, either living donors or cadavers. This bone is typically freeze-dried and possibly demineralized prior to use, mainly to avoid transmission of infection.
- (iii)
- Xenograpfts, where animal bone (bovine, porcine or equine) is used to augment the natural bone of the patient. This is fairly rare in periodontics, but has been used [21].
4. Bioactive Glass Materials
5. Bone Bonding by Bioactive Glass
- (i)
- Formation of silanol groups on the glass surface via a cation exchange process:-Si-O−Na+ + H+ → -Si-OH + Na+This removes protons from solution, increasing the surrounding pH.
- (ii)
- The increased local pH has an excess of OH− ions in the solution surrounding the glass particles. These ions react with -Si-O-Si- units in the glass surface to form Si(OH)4, which dissolves in the surrounding solution.
- (iii)
- The surface -Si-OH groups undergo a condensation reaction to form -Si-O-Si- units in a pre-polymerization process.
- (iv)
- (v)
- Hydroxide and carbonate ions present in the surrounding solution become incorporated into the surface layer. Subsequent interaction with the calcium and phosphate ions leads to the formation of HCA [59].
- (i)
- Proteins adsorb onto the HCA surface.
- (ii)
- Cells attach to the protein layer, and as they do so, they go on to differentiate.
- (iii)
- The population of differentiated cells produce bone matrix. This eventually forms fully functioning bone that is strongly bonded to the glass surface.
6. Bioactive Glasses in the Treatment of Periodontal Damage
- (a)
- As Granular Fillers
- (b)
- Putties containing bioactive glass particles
- (c)
- Treatments for furcation defects
- (d)
- Coatings for implants
- (e)
- Bone augmentation prior to the use of implants
- (f)
- Future directions
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, N.P.; Berglundh, T.; Giannobile, W.V.; Sanz, M. (Eds.) Lindhe’s Clinical Periodontology, 7th ed.; Wiley-Blackwell: Oxford, UK, 2021. [Google Scholar]
- Barzegar, P.E.F.; Ranjbar, R.; Yazdanian, M.; Tahmasebi, E.; Alam, M.; Abbasi, K.; Tebyaniyan, H.; Barzegar, K.E.F. The current natural/chemical materials and innovative technologies in periodontal diseases therapy and regneration: A narrative review. Mater. Today Commun. 2022, 32, 104099. [Google Scholar] [CrossRef]
- Chi, M.; Qi, M.; Lan, A.; Wang, P.; Weir, M.D.; Melo, M.A.; Sun, X.; Dong, B.; Li, C.; Wu, J.; et al. Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal apthogens and biofilms. Int. J. Mol. Sci. 2019, 20, 278. [Google Scholar] [CrossRef][Green Version]
- Hatamifar, A.; Patel, A.; Melhem, R.; Wiedemann, T. Association of periodontal disease and impaired renal function: Evaluation of the National Health and Nutrition Examination Survey (NHANES) 2011–2016. J. Dent. Oral Sci. 2022, 4, 1–7. [Google Scholar]
- Michaud, D.S.; Fu, Z.; Shi, J.; Chung, M. Periodontal disease, tooth loss, and cancer risk. Epidemiol. Rev. 2017, 39, 49–58. [Google Scholar] [CrossRef][Green Version]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposla of a new classification and case definition. J. Periodontol. 2018, 89, 159–172. [Google Scholar] [CrossRef][Green Version]
- Hasan, A.; Palmer, R. A clinical guide to periodontology: Pathology of periodontal disease. Br. Dent. J. 2014, 216, 457–461. [Google Scholar] [CrossRef]
- Vicente, K.M.; Oliviera, B.R.; Silva, E.A.; Santos, G.S.; Todt, G.D.; Santos, I.S.C.; Costa, J.M.; Oliviera Neta, J.A.; Seabra, L.G.; Santos, L.G.; et al. Use of surgical techniques in periodontics: Literature review. Res. Soc. Dev. 2021, 10, e51410313668. [Google Scholar] [CrossRef]
- Sanz, M.; Simion, M. Surgical techniques on periodontal surgery and soft tissue regeneration: Consensu report of Group 3 of the 10th European Workshop on Periodontology. J. Clin. Periodontol. 2014, 41 (Suppl. S15), S92–S97. [Google Scholar] [CrossRef]
- Albandar, J.M. Epidemiology and risk factors of periodontal diseases. Dent. Clin. N. Am. 2005, 49, 517–532. [Google Scholar] [CrossRef]
- Shue, L.; Yufeng, Z.; Mony, U. Biomaterials for periodontal regeneration. Biomatter 2012, 2, 271–277. [Google Scholar] [CrossRef][Green Version]
- Yazdanian, Y.; Arefi, A.H.; Alam, M.; Abbasi, K.; Tebyaniyan, H.; Tahmasebi, E.; Ranjbar, R.; Seifalian, A.; Rahbar, M. Decellurized and biological scaffolds in dental and craniofacial tissue engineering: A comprehensive review. J. Mater. Res. Technol. 2021, 15, 1251–1271. [Google Scholar] [CrossRef]
- Moghadam, E.T.; Yazdanian, Y.; Alam, M.; Abbasi, K.; Tebyaniyan, H.; Tafazoli, A.; Tahmasebi, E.; Ranjbar, R.; Yazdanian, A.; Seifalian, A. Current natural bioactive materials in bone and tooth regeneration in dentistry: A comprehensive review. J. Mater. Res. Technol. 2021, 13, 2078–2114. [Google Scholar] [CrossRef]
- Soudi, A.; Yazdanian, Y.; Ranjbar, R.; Tebyaniyan, H.; Yazdanian, A.; Tahmasebi, E.; Keshvad, A.; Seifalian, A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI J. 2021, 20, 454–489. [Google Scholar] [PubMed]
- Hakim, L.K.; Yazdanian, Y.; Alam, M.; Abbasi, K.; Tebyaniyan, H.; Tahmasebi, E.; Khayatan, D.; Seifalian, A.; Ranjbar, R.; Yazdanian, A. Biocompatible andbiomaterails application in drug delivery systems in oral cavity. Evid.-Based Comp. Alt. Med. 2021, 2021, 9011226. [Google Scholar]
- Kilicarslan, M.; Ilhan, M.; Inal, O.; Orhan, K. Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur. J. Pharm. Sci. 2018, 123, 441–451. [Google Scholar] [CrossRef]
- Cheah, C.W.; Al-Namnam, N.M.; Lau, M.N.; Lim, G.S.; Raman, R.; Fairbairn, P.; Ngeow, W.C. Synthetic material for bone, periodontal, and dental tissue regeneration: Where are now, and where are we heading? Materials 2021, 14, 6123. [Google Scholar] [CrossRef]
- Cattabriga, M.; Pedrazzoli, V.; Wilson, T.G., Jr. The conservative approach in the treatment of furcation lesions. Periodontology 2000 2000, 23, 133–153. [Google Scholar] [CrossRef]
- Rasperini, F.A.G.; Acunzo, R.; Gorbunkova, A.; Pagni, G. New perspectives in the use of biomaterials for periodontal regeneration. Materials 2019, 12, 2197. [Google Scholar]
- Nibali, L.; Zavattini, A.; Nagata, K.; Di Iorio, A.; Lin, G.-H.; Needleman, I.; Donos, N. Tooth loss in molars with and without furcation involvement—A systematic review and meta-analysis. J. Clin. Periodontol. 2016, 43, 156–166. [Google Scholar] [CrossRef]
- Titsinides, S.; Agrogiannis, G.; Karatzas, T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn. Dent. Sci. Rev. 2018, 22, 26–32. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Gaddam, A.; Rebelo, A.; Brazete, D.; Stan, G.E.; Ferreira, J.M.F. Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering. Materials 2018, 11, 2530. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cortellini, P.; Tonetti, M.S. Focus on intrabony defects; guided tissue regeneration. Periodontology 2000 2000, 22, 104–132. [Google Scholar] [CrossRef] [PubMed]
- Polimeni, G.; Koo, K.T.; Pringle, G.A.; Agelan, A.; Safadi, F.F.; Wikesjo, U.M. Histopathological observations of a polylactic acid-based device intended for guided bone/tissue regeneration. Clin. Implant. Dent. Relat. Des. 2008, 110, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Sculean, A.; Nikolidakis, D.; Schwartz, F. Regeneration of periodontal tissues; combinations of barrier membranes and grafting materials—Biological foundation and preclinical evidence: A systematic review. J. Clin. Periodontol. 2008, 35, 106–116. [Google Scholar] [CrossRef]
- Akncbay, H.; Senel, S.; Ay, Z.Y. Application of chitosan gel in the treatment of chronic periodontitis. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80, 290–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X.; Wang, J.; Wang, Y.; Shi, B.; Huang, C.; Yang, X.; Lui, T. Novel chitosan/collagen scaffold containing transforming growth factor-beta 1 for periodontal tissue engineering. Biochem. Biophys. Res. Commun. 2006, 344, 362–369. [Google Scholar] [CrossRef]
- Akman, A.C.; Tigli, R.S.; Gumusderelioglu, M.; Nohutcu, R.M. bFGF-loaded HA-chitosan: A promising scaffold for periodontal tissue engineering. J. Biomed. Mater. Res. A 2010, 92, 953–962. [Google Scholar] [CrossRef]
- Hou, T.; Yan, J.J.; Tsai, A.Y.; Lao, C.S.; Lin, S.J.; Liu, C.M. Polymer-assisted regeneration therapy with Atrisorb barriers in human periodontal intrabony defects. J. Clin. Periodontol. 2004, 31, 68–74. [Google Scholar] [CrossRef]
- da Silva Periera, S.L.; Sallum, A.W.; Casati, M.Z.; Caffesse, R.G.; Weng, D.; Niciti, F.H., Jr.; Sallum, E.A. Comparison of bioabsorbable and non-resorbable membranes in the treatment of dehiscence-type defects. A histomorphometric study in dogs. J. Periodontol. 2000, 71, 1306–1314. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zuo, Y.; Li, J.; Ma, S.; Cheng, L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007, 28, 3338–3348. [Google Scholar] [CrossRef]
- Bagambisa, F.B.; Joos, U.; Schilli, W. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J. Biomed. Mater. Res. 1993, 27, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Deligianni, D.D.; Katsala, N.D.; Koutsoukos, P.G.; Missirlis, Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001, 22, 87–96. [Google Scholar] [CrossRef]
- Hench, L.L.; Wilson, J. An Introduction to Bioceramics; World Scientific Publishing: Singapore, 1993. [Google Scholar]
- Chawla, K.; Lamda, A.L.; Faraz, F.; Tandon, S. Evaluation of β-tricalcium phosphate in human infrabony periodontal osseous defects: A clinical study. Quintessence Int. 2011, 42, 291–300. [Google Scholar] [PubMed]
- Stavropoulos, A.; Windisch, P.; Szendroi-Kiss, D.; Peter, R.; Gera, I.; Sculean, A. Clinical and histologic evaluation of granular Beta-tricalcium phosphate for the treatment of human intrabony periodontal defects: A report on five cases. J. Periodontol. 2010, 81, 325–334. [Google Scholar] [CrossRef]
- Moore, W.R.; Graves, S.E.; Bain, G.I. Synthetic bone graft substitutes. ANZ J. Surg. 2001, 71, 354–361. [Google Scholar] [CrossRef]
- Sukumar, S.; Drizhal, I.; Paulusova, V.; Bukac, J. Surgical treatment of periodontal intrabony defects with calcium sulphate in combination with beta tricalcium phosphate—A 12-month retrospective clinical evaluation. Acta Med. 2010, 53, 229–234. [Google Scholar] [CrossRef][Green Version]
- Pecora, G.; Andreana, S.; Margarone, J.E.; Covani, U.; Sottosanti, J.S. Bone regeneration with a calcium sulphate barrier. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1997, 84, 424–429. [Google Scholar] [CrossRef]
- Orsini, M.; Orsini, G.; Benloch, D.; Aranda, J.J.; Sanz, M. Long-term clinical results on the use of bone-replacement grafts in the treatment of intrabony periodontal defects. Comparison of the use of autogenous bone graft plus calcium sulfate to autogenous bone graft covered with a bioabsorbable membrane. J. Periodontol. 2008, 79, 1630–1637. [Google Scholar] [CrossRef]
- Orsini, M.; Orsini, G.; Benloch, D.; Aranda, J.J.; Lazaro, P.; Sanz, M.; De Luca, M.; Piatelli, A. Comparison of calcium sulfate and autogenous bone graft to bioabsorbable membranes plus autogenous bone graft in the treatment of intrabony periodontal defects: A split-mouth study. J. Periodontol. 2001, 72, 296–302. [Google Scholar] [CrossRef]
- Jones, J.R. Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass®. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.R.; Brauer, D.S.; Hupa, L.; Greenspan, D.C. Bioglass and bioactive glasses and their impact on healthcare. Int. J. Appl. Glass Sci. 2016, 7, 423–434. [Google Scholar] [CrossRef]
- Williams, D.F. Biocompatibility pathway and mechanisms for bioactive materials: The bioactivity zone. Bioact. Mater. 2022, 12, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, A.; Part, J.; Baeza, J. Treatment of cavitary bone defects in chronic osteomylitis: Bioactive glass S53P4 vs calcium sulphate antibiotic beads. J. Bone Jt. Infect. 2017, 2, 194–201. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abbasi, Z.; Bahrololoom, M.E.; Shariat, M.H.; Bagheri, R. Bioactive glasses in dentistry: A review. J. Dent. Biomater. 2015, 2, 1–9. [Google Scholar]
- Singh, S.; Patil, A.; Mali, S.; Jaiswal, H. Bioglass: A new era in modern dentistry. Eur. J. Gen. Dent. 2022, 11, 001–006. [Google Scholar] [CrossRef]
- Hench, L.L.; Polak, J.M. Third generation biomedical materials. Science 2002, 295, 1014–1017. [Google Scholar] [CrossRef][Green Version]
- Fukuba, S.; Okada, M.; Nohara, K.; Iwata, T. Alloplastic bone substitutes for periodontal and bone regeneration in dentistry: Current status and prospects. Materials 2021, 14, 1096. [Google Scholar] [CrossRef]
- Au, A.Y.; Au, R.Y.; Demko, J.L.; Eves, B.; Frondoza, C.G. Consil® bioactive glass particles enhance osteoblast proliferation and selectively modulate cell signalling pathways in vitro. J. Biomed. Mater. Res. Part A 2010, 94, 380–388. [Google Scholar]
- Haugen, H.J.; Lyngstadaas, S.P.; Rossie, F.; Perale, G. Bonegrafts: Which is the ideal biomaterial? J. Clin. Periodontol. 2019, 46, 92–102. [Google Scholar] [CrossRef]
- Norton, M.R.; Wilson, J. Dental implants placed in extraction sites implanted with bioactive glass: Human histology and clinical outcomes. Int. J. Oral Maxillofac. Implant. 2002, 17, 249–257. [Google Scholar]
- Valimaki, V.V.; Aro, H.T. Molecular basis for action of bioactive glasses as bone graft substitute. Scand. J. Surg. 2006, 95, 95–102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kaur, G.; Pandey, O.P.; Singh, K.; Homa, D.; Scott, B.; Pickrell, G. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 2014, 102, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Hench, L.L. Bioceramics—From concept to clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef][Green Version]
- Li, P.J.; Zhang, F.P. The electrochemistry of a glass surface and its application to bioactive glass in solution. J. Non-Cryst. Solids 1990, 119, 112–118. [Google Scholar] [CrossRef]
- Doostmohammadi, A.; Monshi, A.; Fathi, M.H.; Braissant, P. A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite. Ceram. Int. 2011, 37, 1601–1607. [Google Scholar] [CrossRef]
- Fitzgerald, V.; Pickup, D.M.; Greenspan, D.; Wetherall, K.M.; Moss, R.M.; Newport, R. Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. J. Biomed. Mater. Res. Part A 2009, 91, 76–83. [Google Scholar] [CrossRef]
- Gough, J.; Jones, J.R.; Hench, L.L. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 2004, 25, 2039–2046. [Google Scholar] [CrossRef]
- Kaufmann, E.; Ducheyne, P.; Shapiro, I.M. Evaluation of osteoblast response to porous bioactive glass (45S5) substrates by RT-PCR analysis. Tissue Eng. 2006, 6, 19–28. [Google Scholar] [CrossRef]
- Bosetti, M.; Cannas, M. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials 2005, 26, 3873–3879. [Google Scholar] [CrossRef]
- Profeta, A.C.; Prucher, G.M. Bioactive-glass in periodontal surgery and implant dentistry. Dent. Mater. J. 2015, 34, 559–571. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stoor, P.; Sooderling, E.; Salonen, J.I. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol. Scand. 1998, 56, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Papapanou, P.N.; Tonetti, M.S. Diagnosis and epidemiology of periodontal osseous lesions. Periodontology 2000 2000, 22, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Allan, I.; Newman, H.; Wilson, M. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials 2001, 22, 1683–1687. [Google Scholar] [CrossRef]
- Sohrabi, K.; Saraiya, V.; Laage, T.A.; Harris, M.; Blieden, M.; Karimbux, N. An evaluation of bioactive glass in the treatment of periodontal defects: A meta-analysis of randomized controlled clinical trials. J. Periodontol. 2012, 83, 453–464. [Google Scholar] [CrossRef]
- Lovelace, T.B.; Mellonig, J.T.; Meffert, R.M.; Jones, A.S.; Nummikoski, P.V.; Cochrane, D.I. Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans. J. Periodontol. 1998, 69, 1027–1035. [Google Scholar] [CrossRef]
- Schepers, E.; Barbier, L.; Ducheyne, P. Implant placement enhanced by bioactive glass particles of narrow size range. Int. J. Oral Maxillofac. Implant. 1998, 13, 655–665. [Google Scholar]
- Froum, S.J.; Weinberg, M.A.; Tarnow, D. Comparison of bioactive glass synthetic bone graft particles and open debridement in the treatment of human periodontal defects. J. Periodontol. 1998, 69, 698–709. [Google Scholar] [CrossRef]
- Cannio, M.; Bellucci, D.; Roether, J.; Boccaccini, D.N.; Cannillo, V. Bioactive glass applications: A literature review of human clinical trials. Materials 2021, 14, 5440. [Google Scholar] [CrossRef]
- Ioannou, A.L.; Kotsakis, G.A.; Kumar, T.; Hinrichs, J.E.; Romanos, G. Evaluation of the bone regeneration potential of bioactive glass in implant site development surgeries: A systematic review of the literature. Clin. Oral Investig. 2015, 19, 181–191. [Google Scholar] [CrossRef]
- Nevins, M.L.; Camelo, H.; Mevins, H. Human histologic evaluation of bioactive ceramics in the treatment of periodontal osseous defects. Int. J. Periodontol. Rest. Dent. 2000, 20, 459–467. [Google Scholar]
- Chacko, N.L.; Abraham, S.; Rao, H.N.S.; Sridhar, N.; Moon, N.; Barde, D.H. A clinical and radiographic evaluation of periodontal regenerative potential of PerioGlas®: A synthetic, resorbable materials in treating periodontal infrabony defects. J. Int. Oral Health 2014, 6, 20–26. [Google Scholar] [PubMed]
- Zamet, J.S.; Darbar, U.R.; Griffiths, G.S.; Bulman, J.S.; Bragger, U.; Burgin, W.; Newman, H.N. Particulate bioglass as a grafting material in the treatment of periodontal infrabony defects. J. Clin. Periodontol. 1977, 24, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Suh, J.J.; Choi, S.H.; Moon, I.S.; Cho, K.S.; Kim, C.K.; Chai, J.K. Effects of pretreatment clinical parameters on bioactive glass implantation in intrabony periodontal defects. J. Periodontol. 2001, 72, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Turunen, T.; Peltola, J.; Helenius, H.; Yli-Urpo, A.; Happonen, R.P. Bioactive glass and calcium carbonate granules as filler material around titanium and bioactive glass implants in the medullar space of the rabbit tibia. Clin. Oral Implant. Res. 1997, 8, 96–102. [Google Scholar] [CrossRef]
- Karatzas, S.; Zavras, A.; Greenspan, D.; Amar, S. Histologic observations of periodontal would healing after treatment with PerioGlas in nonhuman primates. Int. J. Periodontics Restor. Dent. 1999, 19, 489–499. [Google Scholar]
- Rai, J.J.; Kalantharakath, T. Biomimetic ceramics for periodontal regeneration in infrabony defects: A systematic review. J. Int. Soc. Prev. Community Dent. 2014, 4 (Suppl. S2), S78–S92. [Google Scholar]
- Bottino, M.C.; Thomas, V.; Schmidt, G.; Vohra, Y.K.; Chu, T.M.; Kowolik, M.J.; Janowski, G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent. Mater. 2012, 28, 703–721. [Google Scholar] [CrossRef]
- Ivanovski, S. Periodontal regeneration. Aust. Dent. J. 2009, 54 (Suppl. S1), S118–S128. [Google Scholar] [CrossRef]
- Grover, V.; Kapoor, A.; Malhotra, R.; Uppal, R.S. Evaluation of the efficacy of a bioactive synthetic graft material in the treatment of intrabony periodontal defects. J. Indian Soc. Periodontol. 2013, 17, 104–110. [Google Scholar] [CrossRef]
- Villar, C.C.; Cochran, D.L. Regeneration of periodontal tissues: Guided tissue regeneration. Dent. Clin. N. Am. 2010, 54, 73–92. [Google Scholar] [CrossRef]
- Mengel, R.; Soffner, M.; Jacoby, L.F. Bioabsorbable membrane and bioactive glass in the treatment of intrabony defects in patients with generalized aggressive periodontitis: Results of 12-month clinical and radiological study. J. Periodontol. 2003, 74, 899–908. [Google Scholar] [CrossRef]
- Muller, H.P.; Eger, T. Furcation diagnosis. J. Clin. Periodontol. 1999, 26, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Karring, T.; Cortinelli, P. Regenerative therapy: Furcation defects. Periodontology 2000 1999, 19, 115–137. [Google Scholar] [CrossRef] [PubMed]
- El-Haddad, S.A.; Abd-El Razzak, M.Y.; Saudi, H.I.; El Ghorab, N.M. Evaluation of bioactive glass and autogenous bone in the treatment of Grade II furcation involvement: A randomized controlled trial. J. Interdiscip. Dent. 2014, 4, 13–23. [Google Scholar] [CrossRef]
- Anderegg, C.R.; Alexander, D.C.; Freidman, M. A bioactive glass particulate in the treatment of molar furcation invasions. J. Periodontol. 1999, 70, 384–387. [Google Scholar] [CrossRef]
- Nasr, H.F.; Aichelmann-Reidy, M.E.; Yukna, R.A. Bone and bone substitutes. Periodontology 2000 1999, 19, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Tadjoen, E.S.; de Lange, G.L.; Holzmann, P.J.; Kulper, L.; Burger, E.H. Histological observations on biopsies harvested following sinus floor elevation using a bioactive glass materials of narrow size range. Clin. Oral Implant. Res. 2000, 11, 334–344. [Google Scholar] [CrossRef]
- Lopez-Estebana, S.; Saiz, E.; Fujino, S.; Oku, T.; Suganuma, K.; Tomsia, A.P. Bioactive glass coatings for orthopedic metallic implants. J. Eur. Ceram. Soc. 2003, 23, 2921–2930. [Google Scholar] [CrossRef][Green Version]
- Wennerberg, A.; Bougas, K.; Jimbo, R.; Albrektsson, T. Implant coatings: New modalities for increased osseointegration. Am. J. Dent. 2013, 26, 105–112. [Google Scholar]
- Xuereb, M.; Camilleri, J.; Attard, N.J. Systematic review of current dental implant coating materials and novel coating techniques. Quintessence Int. 2015, 28, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.L.; Chan, D.C. Hydroxyapatite and their use as coatings in dental implants: A review. Crit. Rev. Biomed. Eng. 2000, 28, 667–707. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T. Hydroxyapatite-coated implants: A case against their use. J. Oral Maxillofac. Surg. 1998, 56, 1312–1326. [Google Scholar] [CrossRef]
- Moritz, N.; Rossi, S.; Vedel, E.; Tirri, T.; Ylanen, H.; Aro, H.; Narhi, H. Implants coated with bioactive glass by CO2 laser, an in vivo study. J. Mater. Sci. Mater. Med. 2004, 15, 795–802. [Google Scholar] [CrossRef]
- Vitale-Brovarone, C.; Verne, E. SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications. J. Mater. Sci. Mater. Med. 2005, 16, 863–871. [Google Scholar] [CrossRef]
- Carrado, A. Structural, microstructural and residual stress investigations of plasma-sprayed hydroxyapatite on Ti6Al4V. ACS Appl. Mater. Interfaces 2010, 2, 561–565. [Google Scholar] [CrossRef]
- Verne, E. Bioactive glass and glass-ceramic coatings. In Bioglasses: An introduction; Jones, J.R., Clare, A.G., Eds.; John Wiley & Sons: Chichester, UK, 2012. [Google Scholar]
- Mistry, S.; Kundu, D.; Data, S.; Basu, D. Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone. Aust. Dent. J. 2011, 56, 68–75. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Montfort, M.J.; McLoughlin, S.W. Differential healing response of bone adjacent to porous implants coated with hydroxyapatite and 45S5 bioactive glass. J. Biomed. Mater. Res. 2001, 55, 603–612. [Google Scholar] [CrossRef]
- Lekolm, U.; Gunne, J.; Henry, P. Survival of the Branemark implant in partially edentulous jaws: A 10-year prospective multicenter study. Int. J. Oral Maxillofac. Implant. 1999, 14, 639–645. [Google Scholar]
- Gatti, A.M.; Simonetti, L.A.; Monari, E.; Guidi, S.; Greenspan, D. Bone augmentation with bioactive glass in three cases of dental implant placement. J. Biomater. Appl. 2006, 20, 325–339. [Google Scholar] [CrossRef]
Stage | Condition | Comments |
---|---|---|
Stage I | Borderline between gingivitis and periodontitis | Some loss of attachment. Diagnosis may be challenging in general dental practice |
Stage II | Established periodontitis | Compromised support for tooth. Responds to relatively simple management. |
Stage III | Significant damage to attachment with some tooth loss. | Deep periodontal lesions and furcation Involvement. Does not require complex to restore function. |
Stage IV | Considerable damage to attachment with significant tooth loss. | Loss of masticatory function. Deep Periodontal lesions and tooth hypermobility. Case management requires stabilization/ Restoration of masticatory function. |
Material | Comments |
---|---|
Hydroxyapatite | Similar composition to bone but clinical results are mixed. |
Tricalcium phosphate | Bioactive, resorbable. Clinical outcomes good. |
Biphasic calcium phosphate | Biodegradable. Good clinical outcomes. |
Calcium sulfate | Used as a barrier. Clinical outcomes improved by mixing with bone. |
Degradable polymer systems | Examples: chitosan, polylactic acid. Used for drug delivery. |
Component | Proportion/mol% |
---|---|
SiO2 | 46.1 |
Na2O | 24.4 |
CaO | 26.9 |
P2O5 | 2.6 |
Property | Value |
---|---|
Density | 2.7 g cm−3 |
Network connectivity | 2.12 |
Glass transition temperature | 538 °C |
Onset of crystallisation | 677 °C |
Coefficient of thermal expansion | 15.1 × 108/°C |
Young’s modulus | 35 MPa |
Materials | Producer | Comments |
---|---|---|
PerioGlas | Ionion Oy, Tempere, Finland | |
PerioGlas PerioGlas Bonegraft Novabone Dental Morsels Novabone BBG | Novabone Products, Jacksonville, Florida, USA | |
PerioGlas Plus Novabone Dental Putty PerioGlas Dental Putty | Contain water-soluble binders (glycerin, gelatin) | |
Unigraft Ossiform | Unicare Biomedical Laguna Hills, California, USA | |
Bonalive Bonalive Putty | Bonalive Biomaterials, Turku, Finland | |
Consil Dental (Additionally, Consil Orthopedics Consil Putty) | Nutramax Laboratories, Edgewood, Maryland, USA | For use in cats and dogs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicholson, J.W. Periodontal Therapy Using Bioactive Glasses: A Review. Prosthesis 2022, 4, 648-663. https://doi.org/10.3390/prosthesis4040052
Nicholson JW. Periodontal Therapy Using Bioactive Glasses: A Review. Prosthesis. 2022; 4(4):648-663. https://doi.org/10.3390/prosthesis4040052
Chicago/Turabian StyleNicholson, John W. 2022. "Periodontal Therapy Using Bioactive Glasses: A Review" Prosthesis 4, no. 4: 648-663. https://doi.org/10.3390/prosthesis4040052