Experimental Investigation on Quantum Channel Noise Simulation and Information Security Threshold Based on Two-Photon Four-Qubit Hyper-Entanglement Systems
Abstract
1. Introduction
2. The Mermin Inequality and Ardehali Inequality of a Four-Qubit Entangled State
3. Preparation and Characterization of Two-Photon Four-Qubit Hyper-Entangled States
4. Impact of Bit-Flip Noise on the Fidelity and Robustness of Entanglement Channels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Palazuelos, C. Super-activation of quantum non-locality. Phys. Rev. Lett. 2012, 109, 190401. [Google Scholar] [CrossRef] [PubMed]
- Erhard, M.; Krenn, M.; Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2020, 2, 365–381. [Google Scholar] [CrossRef]
- Giustina, M.; Versteegh, M.A.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.; Abellán, C.; et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef]
- Dawson, C.M.; Haselgrove, H.L.; Nielsen, M.A. Noise thresholds for optical quantum computers. Phys. Rev. Lett. 2006, 96, 020501. [Google Scholar] [CrossRef]
- Amico, M.; Dittel, C. Simulation of wave-particle duality in multi-path interferometers on a quantum computer. Phys. Rev. A 2020, 102, 032605. [Google Scholar] [CrossRef]
- Harrow, A.W.; Montanaro, A. Quantum computational supremacy. Nature 2017, 549, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Baak, J.G.; Uwe, R. Fischer Classical and quantum metrology of the Lieb-Liniger model. Phys. Rev. A 2022, 106, 062442. [Google Scholar] [CrossRef]
- Ying, Z.J.; Felicetti, S.; Liu, G. Daniel braak critical quantum metrology in the non-linear quantum rabi model. Entropy 2022, 24, 1015. [Google Scholar] [CrossRef]
- Tittel, W.; Brendel, J.; Zbinden, H.; Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 1998, 81, 3563–3566. [Google Scholar] [CrossRef]
- Kiktenko, E.O.; Popov, A.A.; Fedorov, A.K. Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A 2016, 93, 062305. [Google Scholar] [CrossRef]
- Patro, S.; Chakrabarty, I.; Ganguly, N. Non-negativity of conditional von Neumann entropy and global unitary operations. Phys. Rev. A 2017, 96, 062102. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, S.W.H.; Jeong, H.; Park, H.S. Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 2020, 124, 060501. [Google Scholar] [CrossRef]
- Pan, J.W.; Bouwmeester, D.; Weinfurter, H.; Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 1998, 80, 3891. [Google Scholar] [CrossRef]
- Agustí, A.; Sabín, C. Non-gaussian entanglement swapping between three-mode spontaneous parametric down conversion and three qubits. Phys. Rev. A 2022, 105, 022401. [Google Scholar]
- Long, G.L.; Liu, X.S. Theoretically efficient high capacity quantum-key-distribution scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
- Kwek, L.C.; Cao, L.; Luo, W.; Wang, Y.; Sun, S.; Wang, X.; Liu, A.Q. Chip-based quantum key distribution. AAPPS Bull. 2021, 31, 1. [Google Scholar] [CrossRef]
- Hillery, M.; Buzek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829. [Google Scholar] [CrossRef]
- Ju, X.X.; Zhong, W.; Sheng, Y.B.; Zhou, L. Measurement-device-independent quantum secret sharing with hyper-encoding. Chin. Phys. B 2022, 31, 100302. [Google Scholar] [CrossRef]
- Roy, P.; Bera, S.; Gupta, S.; Majumdar, A.S. Device-independent quantum secure direct communication under non-markovian quantum channels. Quantum Inf Process. 2024, 23, 170–183. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, D.S.; Sheng, Y.B.; Zhou, L.; Shi, B.S.; Guo, G.C. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 2017, 118, 220501. [Google Scholar] [CrossRef]
- Gühne, O.; Cabello, A. Generalized Ardehali-Bell inequalities for graph states. Phys. Rev. A 2008, 77, 032108. [Google Scholar] [CrossRef]
- Yao, X.C.; Wang, T.X.; Xu, P.; Lu, H.; Pan, G.S.; Bao, X.H.; Peng, C.Z.; Lu, C.Y.; Chen, Y.A.; Pan, J.W. Observation of eight-photon entanglement. Nat. Photon. 2012, 6, 225–228. [Google Scholar] [CrossRef]
- Karan, S.; Aarav, S.; Bharadhwaj, H.; Taneja, L.; De, A.; Kulkarni, G.; Meher, N.; Jha, A.K. Phase matching in β-barium borate crystals for spontaneous parametric down-conversion. J. Opt. 2020, 22, 083501. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Greenberger, D.M.; Horne, M.; Shimony, A.; Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 1990, 58, 1131–1143. [Google Scholar] [CrossRef]
- Kumar, C.; Saxena, G.; Arvind. Multiphoton Bell-type inequality: A tool to unearth nonlocality of continuous variable quantum optical systems. Phys. Rev. A 2021, 103, 042224. [Google Scholar] [CrossRef]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Mermin, N.D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 1990, 65, 1838. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.F.; Wolf, M.M. Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A 2001, 64, 032112. [Google Scholar] [CrossRef]
- Ardehali, M. Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Phys. Rev. A 1992, 46, 5375. [Google Scholar] [CrossRef] [PubMed]
- Acin, A.; Bruss, D.; Lewenstein, M.; Sanpera, A. Classification of Mixed Three-Qubit States. Phys. Rev. Lett. 2001, 87, 040401. [Google Scholar] [CrossRef]
- Bourennane, M.; Eibl, M.; Kurtsiefer, C.; Gaertner, S.; Weinfurter, H. Experimental Detection of Multipartite Entanglement using Witness Operators. Phys. Rev. Lett. 2004, 92, 087902. [Google Scholar] [CrossRef]
- Li, T.; Liu, T.J.; Wang, S.; Jebarathinam, C.; Wang, Q. Experimental violation of Mermin steering inequality by three-photon entangled states with nontrivial GHZ-fidelity. Opt. Express 2019, 27, 13559–13567. [Google Scholar] [CrossRef]
- Almeida, M.L.; Barrett, S.J.; Toth, G.; Acin, A. Noise robustness of the nonlocality of entangled quantum states. Phys. Rev. Lett. 2007, 99, 040403. [Google Scholar] [CrossRef]
- Bovino, F.A.; Castagnoli, G.; Cabello, A.; Linares, A.L. Experimental noise resistant Bell-inequality violations for polarization-entangled photons. Phys. Rev. A 2006, 73, 062110. [Google Scholar] [CrossRef]
- Yuan, X.; Cao, Z.; Ma, X.F. Randomness requirement on CHSH Bell test in the multiple run scenario. Phys. Rev. A 2015, 91, 032111. [Google Scholar] [CrossRef]
- Tsirelson, B.S. Quantum analogues of the Bell inequalities the case of two spatially separated domains. J. Sov. Math. 1987, 36, 557–570. [Google Scholar] [CrossRef]
- Gisin, N. Bell inequality holds for all non-product states. Phys. Lett. A 1991, 154, 201–205. [Google Scholar] [CrossRef]
- Popescu, S.; Rohrlich, D. Generic quantum nonlocality. Phys. Lett. A 1992, 166, 293–297. [Google Scholar] [CrossRef]
- Collins, D. Bell-type inequalities to detect True n-body nonseparability. Phys. Rev. Lett. 2002, 88, 170405. [Google Scholar] [CrossRef]
- Alsina, D. Operational approach to Bell inequalities: Application to qutrits. Phys. Rev. A 2016, 94, 032102. [Google Scholar] [CrossRef]
- Raphael, F.; Gustavo, R. Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 2015, 92, 012338. [Google Scholar] [CrossRef]
- Lavoie, J.; Kaltenbaek, R.; Resch, K.J. Experimental violation of Svetlichny’s inequality. New J. Phys. 2009, 11, 073051. [Google Scholar] [CrossRef]
- Jungnitsch, B.; Niekamp, S.; Kleinmann, M.; Guhne, O.; Lu, H.; Gao, W.B.; Chen, Y.A.; Chen, Z.B.; Pan, J.W. Increasing the Statistical Significance of Entanglement Detection in Experiments. Phys. Rev. Lett. 2010, 104, 210401. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, M.; Sun, B.; Cao, L.; Yang, Y.; Liu, X.; Zhang, Q.W.; Lu, H.X.; Driscoll, K.A. Preparation and Analysis of Two-Dimensional Four-Qubit Entangled States with Photon Polarization and Spatial Path. Entropy 2022, 24, 1388. [Google Scholar] [PubMed]
- Fung, C.H.F.; Chau, H.F. Physical time-energy cost of a quantum process determines its information fidelity. Phys. Rev. A 2014, 90, 022333. [Google Scholar] [CrossRef]
- Ayan, P.; Rivu, G.; Tamoghna, D.; Aditi, S.D. Dimensional advantage in secure information trading via the noisy dense coding protocol. Phys. Rev. A 2024, 110, 032419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Qin, H.; Cao, L.; Yang, Y.; Liu, X.; Zhang, Q.; Lu, H.; Driscoll, K.A.; Wang, M. Experimental Investigation on Quantum Channel Noise Simulation and Information Security Threshold Based on Two-Photon Four-Qubit Hyper-Entanglement Systems. Quantum Rep. 2025, 7, 50. https://doi.org/10.3390/quantum7040050
Zhao J, Qin H, Cao L, Yang Y, Liu X, Zhang Q, Lu H, Driscoll KA, Wang M. Experimental Investigation on Quantum Channel Noise Simulation and Information Security Threshold Based on Two-Photon Four-Qubit Hyper-Entanglement Systems. Quantum Reports. 2025; 7(4):50. https://doi.org/10.3390/quantum7040050
Chicago/Turabian StyleZhao, Jiaqiang, Haoxiang Qin, Lianzhen Cao, Yang Yang, Xia Liu, Qinwei Zhang, Huaixin Lu, Kellie Ann Driscoll, and Meijiao Wang. 2025. "Experimental Investigation on Quantum Channel Noise Simulation and Information Security Threshold Based on Two-Photon Four-Qubit Hyper-Entanglement Systems" Quantum Reports 7, no. 4: 50. https://doi.org/10.3390/quantum7040050
APA StyleZhao, J., Qin, H., Cao, L., Yang, Y., Liu, X., Zhang, Q., Lu, H., Driscoll, K. A., & Wang, M. (2025). Experimental Investigation on Quantum Channel Noise Simulation and Information Security Threshold Based on Two-Photon Four-Qubit Hyper-Entanglement Systems. Quantum Reports, 7(4), 50. https://doi.org/10.3390/quantum7040050