A Novel QCA Design of Energy-Efficient Three-Input AND/OR Circuit
Abstract
1. Introduction
2. Methodology
2.1. Proposed QCA Structures of a Three-Input AND/OR Function
2.2. Development of n-Input AND/OR Logic Functions Based on the Proposed Structure
3. Simulation Results and Comparison
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- 2013 International Technology Roadmap for Semiconductors (ITRS). 2013. Available online: www.semiconductors.org (accessed on 28 March 2023).
- Lent, C.S.; Tougaw, P.D.; Porod, W.; Bernstein, G.H. Quantum cellular automata. Nanotechnology 1993, 4, 49. [Google Scholar] [CrossRef]
- Tougaw, P.D.; Lent, C.S. Logical devices implemented using quantum cellular automata. J. Appl. Phys. 1994, 75, 1818–1825. [Google Scholar] [CrossRef]
- Lent, C.S.; Tougaw, P.D. A device architecture for computing with quantum dots. Proc. IEEE 1997, 85, 541–557. [Google Scholar] [CrossRef]
- Porod, W. Quantum-dot devices and quantum-dot cellular automata. Intern. J. Bifurc. Chaos 1997, 7, 2199–2218. [Google Scholar] [CrossRef]
- Snider, G.; Orlov, A.; Amlani, I.; Zuo, X.; Bernstein, G.; Lent, C.; Merz, J.; Porod, W. Quantum-dot cellular automata: Review and recent experiments. J. Appl. Phys. 1999, 85, 4283–4285. [Google Scholar] [CrossRef]
- Walus, K.; Jullien, G.A.; Dimitrov, V.S. Computer arithmetic structures for quantum cellular automata. In Proceedings of the Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1435–1439. [Google Scholar]
- Ahmadpour, S.; Jafari Navimipour, N.; Mosleh, M.; Noorallahzadeh, M.; Kassa, S.; Ahmed, S. A new fault-tolerance majority voter circuit for quantum-based nano-scale digital systems. J. Comput. Electron. 2025, 24, 149. [Google Scholar] [CrossRef]
- Safoev, N.; Jeon, J.C. Design and Evaluation of Cell Interaction Based Vedic Multiplier Using Quantum-Dot Cellular Automata. Electronics 2020, 9, 1036. [Google Scholar] [CrossRef]
- Babaie, S.; Sadoghifar, A.; Bahar, A.N. Design of an Efficient Multilayer Arithmetic Logic Unit in Quantum-Dot Cellular Automata (QCA). IEEE Trans. Circuits Syst. II 2019, 66, 963–967. [Google Scholar] [CrossRef]
- Bahar, A.N.; Wahid, K.A. Design of QCA-Serial Parallel Multiplier (QSPM) with Energy Dissipation Analysis. IEEE Trans. Circuits Syst. II 2020, 67, 1939–1943. [Google Scholar] [CrossRef]
- Abedi, D.; Jaberipur, G. Decimal Full Adders Specially Designed for Quantum-Dot Cellular Automata. IEEE Trans. Circuits Syst. II 2018, 65, 106–110. [Google Scholar] [CrossRef]
- Chu, Z.; Li, Z.; Xia, Y.; Wang, L.; Liu, W. BCD Adder Designs based on Three-Input XOR and Majority Gates. IEEE Trans. Circuits Syst. II 2020, 68, 1942–1946. [Google Scholar] [CrossRef]
- Sekar, K.; Marshal, R.; Lakshminarayanan, G. High-speed serial–parallel multiplier in quantum-dot cellular automata. IEEE Embed. Syst. Lett. 2021, 14, 31–34. [Google Scholar] [CrossRef]
- Alharbi, M.; Edwards, G.; Stocker, R. Reversible Quantum-Dot Cellular Automata-Based Arithmetic Logic Unit. Nanomaterials 2023, 13, 2445. [Google Scholar] [CrossRef]
- Yan, A.; Liu, R.; Cui, J.; Ni, T.; Girard, P.; Wen, X.; Zhang, J. Designs of BCD Adder Based on Excess-3 Code in Quantum-dot Cellular Automata. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2256–2260. [Google Scholar] [CrossRef]
- Chugh, H.; Singh, S. Efficient co-planar adder designs in quantum dot cellular automata: Energy and cost optimization with crossover elimination. Integration 2024, 94, 102103. [Google Scholar] [CrossRef]
- Song, Z.; Xie, G.; Cheng, X.; Wang, L.; Zhang, Y. An Ultra-Low Cost Multilayer RAM in Quantum-Dot Cellular Automata. IEEE Trans. Circuits Syst. II 2020, 67, 3397–3401. [Google Scholar] [CrossRef]
- Raj, M.; Gopalakrishnan, L.; Ko, S.B.; Naganathan, N.; Ramasubramanian, N. Configurable Logic Blocks and Memory Blocks for Beyond-CMOS FPGA-Based Embedded Systems. IEEE Embed. Syst. Lett. 2020, 12, 113–116. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, X.; Cui, H.; Gu, Z.; Han, Z. A design methodology of line feedback shift registers with quantum cellular automata. IEEE Open J. Nanotechnol. 2021, 2, 129–139. [Google Scholar] [CrossRef]
- Jeon, J.; Almatrood, A.; Kim, H. Multi-Layered QCA Content-Addressable Memory Cell Using Low-Power Electronic Interaction for AI-Based Data Learning and Retrieval in Quantum Computing Environment. Sensors 2022, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Ahmed, S.; Bahar, A.; Wahid, K.; Otsuki, A.; Singh, P. Design of Cost-Efficient SRAM Cell in Quantum Dot Cellular Automata Technology. Electronics 2023, 12, 367. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, C.; Cheng, X.; Xie, G. Design and Implementation of SRAM for LUT and CLB Using Clocking Mechanism in Quantum-Dot Cellular Automata. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3909–3913. [Google Scholar] [CrossRef]
- Seyedi, S.; Otsuki, A.; Navimipour, N.J. A New Cost-Efficient Design of a Reversible Gate Based on a Nano-Scale Quantum-Dot Cellular Automata Technology. Electronics 2021, 10, 1806. [Google Scholar] [CrossRef]
- Perri, S.; Spagnolo, F.; Frustaci, F.; Corsonello, P. Multibit Full Comparator Logic in Quantum-Dot Cellular Automata. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4508–4512. [Google Scholar] [CrossRef]
- Bahar, A.N.; Wahid, K.A. Design and Implementation of Approximate DCT Architecture in Quantum-Dot Cellular Automata. IEEE Trans. VLSI Syst. 2020, 28, 2530–2539. [Google Scholar] [CrossRef]
- Almatrood, A.; George, A.; Singh, H. Low-Power Multiplexer Structures Targeting Efficient QCA Nanotechnology Circuit Designs. Electronics 2021, 10, 1885. [Google Scholar] [CrossRef]
- Alharbi, M.; Edwards, G.; Stocker, R. An Ultra-Energy-Efficient Reversible Quantum-Dot Cellular Automata 8: 1 Multiplexer Circuit. Quantum Rep. 2024, 6, 41–57. [Google Scholar] [CrossRef]
- Sharma, V.; Kaushik, N. Ultra-optimized demultiplexer unit design in quantum-dot cellular automata nanotechnology. E-Prime-Adv. Electr. Eng. Electron. Energy 2024, 7, 100445. [Google Scholar] [CrossRef]
- Wang, L.; Xie, G. A Novel XOR/XNOR Structure for Modular Design of QCA Circuits. IEEE Trans. Circuits Syst. II 2020, 67, 3327–3331. [Google Scholar] [CrossRef]
- Zhang, R.; Gupta, P.; Jha, N. Majority and minority network synthesis with application to QCA-, SET-, and TPL-based nanotechnologies. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2007, 26, 1233–1245. [Google Scholar] [CrossRef]
- Kong, K.; Shang, Y.; Lu, R. An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 2009, 9, 170–183. [Google Scholar] [CrossRef]
- Wang, P.; Niamat, M.; Vemuru, S.; Alam, M.; Killian, T. Synthesis of majority/minority logic networks. IEEE Trans. Nanotechnol. 2015, 14, 473–483. [Google Scholar] [CrossRef]
- Ko, C.; Lin, C.; Chen, Y.; Wang, C. Majority logic circuit minimization using node addition and removal. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 41, 642–655. [Google Scholar] [CrossRef]
- Almatrood, A.; Singh, H. A comparative study of majority/minority logic circuit synthesis methods for post-CMOS nanotechnologies. Engineering 2017, 9, 890. [Google Scholar] [CrossRef]
- Torres, F.S.; Wille, R.; Niemann, P.; Drechsler, R. An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 3031–3041. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Viamontes, G.; Markov, I.; Hayes, J. Probabilistic transfer matrices in symbolic reliability analysis of logic circuits. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2008, 13, 1–35. [Google Scholar] [CrossRef]
- Han, J.; Chen, H.; Boykin, E.; Fortes, J. Reliability evaluation of logic circuits using probabilistic gate models. Microelectron. Reliab. 2011, 51, 468–476. [Google Scholar] [CrossRef]
- Liu, W.; Lu, L.; O’Neill, M.; Swartzlander, E. A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 2014, 13, 467–487. [Google Scholar] [CrossRef]
Parameter | Standard Value |
---|---|
Size of a Quantum Dot | 5 mm |
Dimensions of Each Cell | 18 nm × 18 nm |
Distance Between Two Cells | 20 nm |
Layer Separation | 11.5 nm |
Temperature | 1 K |
Relaxation Time | s |
Clock Period | s |
Input Period | s |
Time Step | s |
Total Simulation Time | s |
Clock High | J |
Clock Low | J |
Clock Shift | 0 |
Clock Slope | s |
Type of Clock Signal | GAUSS |
Radius of Effect | 80 nm |
Relative Permittivity | 12.9 |
Function | Circuit Design | Energy Dissipation (meV) with Respect to the Input Assignments () | Average Energy Dissipation (meV) | Area (µm2) | Latency | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | |||||
AND | Proposed (1 zone) | 0.346 | 0.186 | 0.338 | 1.091 | 0.351 | 0.229 | 0.387 | 0.994 | 0.490 | 0.02 | 0.25 |
Proposed (2 zones) | 0.333 | 0.173 | 0.327 | 1.023 | 0.337 | 0.228 | 0.499 | 0.735 | 0.457 | 0.02 | 0.5 | |
[36] * (2 zones) | 0.454 | 1.146 | 1.025 | 0.786 | 1.062 | 1.755 | 1.634 | 1.201 | 1.133 | 0.03 | 0.5 | |
[36] * (3 zones) | 0.443 | 1.136 | 1.015 | 0.555 | 1.051 | 1.743 | 1.622 | 1.190 | 1.094 | 0.03 | 0.75 | |
[27] * | 0.445 | 0.291 | 0.424 | 0.732 | 0.466 | 0.312 | 0.444 | 2.154 | 0.659 | 0.03 | 0.75 | |
[8] * | 0.469 | 0.438 | 1.061 | 1.703 | 0.477 | 0.446 | 1.069 | 2.393 | 1.007 | 0.03 | 0.5 | |
OR | Proposed (1 zone) | 0.794 | 0.246 | 0.230 | 0.496 | 0.814 | 0.202 | 0.187 | 0.493 | 0.433 | 0.02 | 0.25 |
Proposed (2 zones) | 0.534 | 0.358 | 0.229 | 0.482 | 0.745 | 0.191 | 0.174 | 0.480 | 0.399 | 0.02 | 0.5 | |
[36] * (2 zones) | 0.668 | 1.755 | 1.682 | 0.573 | 1.083 | 1.146 | 1.074 | 1.181 | 1.145 | 0.03 | 0.5 | |
[36] * (3 zones) | 0.436 | 1.743 | 1.670 | 0.562 | 1.072 | 1.136 | 1.063 | 1.170 | 1.106 | 0.03 | 0.75 | |
[27] * | 0.445 | 0.315 | 0.313 | 0.580 | 1.867 | 0.294 | 0.292 | 0.601 | 0.588 | 0.03 | 0.75 | |
[8] * | 1.316 | 1.050 | 0.329 | 0.828 | 2.006 | 1.042 | 0.321 | 0.836 | 0.966 | 0.03 | 0.5 |
Function | Circuit Design | Constant | Energy Dissipation (meV) with Respect to the Input Assignments () | Average Energy Dissipation (meV) | Area (µm2) | Latency | |||
---|---|---|---|---|---|---|---|---|---|
00 | 01 | 10 | 11 | ||||||
AND | Proposed (1 zone) | 0.3329 | 0.2056 | 0.3714 | 0.5246 | 0.3586 | 0.02 | 0.25 | |
Proposed (2 zones) | 0.3093 | 0.1945 | 0.4739 | 0.4683 | 0.3615 | 0.02 | 0.5 | ||
Proposed (1 zone) | 0.5066 | 0.1809 | 0.5555 | 0.5402 | 0.4458 | 0.02 | 0.25 | ||
Proposed (2 zones) | 0.5136 | 0.1661 | 0.6854 | 0.4057 | 0.4427 | 0.02 | 0.5 | ||
Proposed (1 zone) | 0.4096 | 0.2647 | 0.4500 | 0.4916 | 0.4040 | 0.02 | 0.25 | ||
Proposed (2 zones) | 0.4054 | 0.2473 | 0.4578 | 0.3757 | 0.3715 | 0.02 | 0.5 | ||
[36] (1 zone) | - | 0.3057 | 0.9973 | 0.8769 | 0.6801 | 0.7150 | 0.01 | 0.25 | |
[36] (2 zones) | - | 0.2963 | 0.9857 | 0.8669 | 0.3708 | 0.6299 | 0.01 | 0.5 | |
[27] (1) | - | 0.2784 | 0.1243 | 0.2566 | 0.5860 | 0.3113 | 0.01 | 0.5 | |
[27] (2) | - | 0.2702 | 0.9271 | 0.1922 | 0.3688 | 0.4396 | 0.01 | 0.5 | |
[8] | - | 0.3393 | 0.3083 | 0.9311 | 1.5209 | 0.7749 | 0.01 | 0.25 | |
OR | Proposed (1 zone) | 0.3933 | 0.2310 | 0.2064 | 0.4810 | 0.3279 | 0.02 | 0.25 | |
Proposed (2 zones) | 0.3370 | 0.3334 | 0.1953 | 0.4574 | 0.3308 | 0.02 | 0.5 | ||
Proposed (1 zone) | 0.4711 | 0.5542 | 0.1786 | 0.5095 | 0.4284 | 0.02 | 0.25 | ||
Proposed (2 zones) | 0.3366 | 0.6840 | 0.1638 | 0.5165 | 0.4252 | 0.02 | 0.5 | ||
Proposed (1 zone) | 0.4276 | 0.4488 | 0.2581 | 0.4125 | 0.3867 | 0.02 | 0.25 | ||
Proposed (2 zones) | 0.3117 | 0.4566 | 0.2407 | 0.4082 | 0.3543 | 0.02 | 0.5 | ||
[36] (1 zone) | - | 0.5616 | 0.9979 | 0.9246 | 0.4245 | 0.7272 | 0.01 | 0.25 | |
[36] (2 zones) | - | 0.2524 | 0.9880 | 0.9130 | 0.4151 | 0.6421 | 0.01 | 0.5 | |
[27] (1) | - | 0.3663 | 0.1995 | 0.8484 | 0.3836 | 0.4495 | 0.01 | 0.5 | |
[27] (2) | - | 0.2989 | 0.1266 | 0.1252 | 0.4129 | 0.2409 | 0.01 | 0.5 | |
[8] | - | 1.1340 | 0.9120 | 0.1910 | 0.6981 | 0.7337 | 0.01 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almatrood, A. A Novel QCA Design of Energy-Efficient Three-Input AND/OR Circuit. Quantum Rep. 2025, 7, 38. https://doi.org/10.3390/quantum7030038
Almatrood A. A Novel QCA Design of Energy-Efficient Three-Input AND/OR Circuit. Quantum Reports. 2025; 7(3):38. https://doi.org/10.3390/quantum7030038
Chicago/Turabian StyleAlmatrood, Amjad. 2025. "A Novel QCA Design of Energy-Efficient Three-Input AND/OR Circuit" Quantum Reports 7, no. 3: 38. https://doi.org/10.3390/quantum7030038
APA StyleAlmatrood, A. (2025). A Novel QCA Design of Energy-Efficient Three-Input AND/OR Circuit. Quantum Reports, 7(3), 38. https://doi.org/10.3390/quantum7030038