Neutrino Mixing Matrix with SU(2)4 Anyon Braids
Abstract
1. Introduction
- Introduce perturbations to the TBM form (e.g., charged lepton corrections);
- Search for alternative structures and underlying symmetries beyond traditional flavour groups.
2. Standard Parametrization of the PMNS Matrix
3. Modular Tensor Categories and Anyon Models
4. Braiding in the Modular Tensor Category
5. Takagi Factorization and the PMNS Matrix
6. Discussion and Conclusions
6.1. Summary of Results
6.2. Physical Interpretation
- 1.
- Topological origin of leptonic flavour. The result suggests that lepton-generation mixing may originate from an underlying topological phase whose low-energy effective description is the MTC. In this picture, different neutrino flavours correspond to distinct fusion channels, while braiding operations realise basis changes between flavour and mass eigenstates.
- 2.
- Built-in CP violation.The complex phases of naturally induce a Dirac phase that emerges from the same braid data that fix the mixing angles.
- 3.
- Minimality.Only two generators of the small group are required. No additional degrees of freedom beyond those already present in the category enter the construction.
6.3. Phenomenological Tests
- Predicted Majorana phases.
- Correlated angle shifts.
- Absence of charged-lepton corrections.Because the PMNS matrix is generated directly from a braid operator, charged-lepton rotations should be small. Observables sensitive to therefore critically test the proposal.
6.4. Open Questions
- 1.
- Embedding into a full quantum field theory.A concrete mechanism linking the anyonic sector to Standard-Model leptons remains to be constructed. Possible routes include effective 2D defects in 4D space-time or holographic duals of 3D TQFTs.
- 2.
- Quark–lepton unification.The same finite group has appeared in attempts to model the CKM matrix [30]. Whether a single MTC or a larger braided product can generate both CKM and PMNS consistently is an enticing avenue.
- 3.
- Higher-category generalizations.Extending the analysis to with or to other rank-2 MTCs could reveal a systematic classification of flavour patterns in terms of braid statistics.
6.5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pontecorvo, B. Mesonium and anti-mesonium. Sov. Phys. JETP 1957, 6, 429–431. [Google Scholar]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962, 28, 870–880. [Google Scholar] [CrossRef]
- Tribimaximal Mixing. Available online: https://en.wikipedia.org/wiki/Tribimaximal_mixing (accessed on 1 March 2025).
- Ma, E.; Rajasekaran, G. Softly broken A4 symmetry for nearly degenerate neutrino masses. Phys. Rev. D 2001, 64, 113012. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions. Nucl. Phys. B 2005, 720, 63–88. [Google Scholar] [CrossRef]
- Feruglio, F.; Hagedorn, C.; Lin, Y.; Merlo, L. Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry. Nucl. Phys. B 2007, 775, 120–142. [Google Scholar] [CrossRef]
- An, F.P.; Bai, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R.L.; et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef]
- Ahn, J.K.; Chebotaryov, S.; Choi, J.H.; Choi, S.; Choi, W.; Choi, Y.; Jang, H.I.; Jang, J.S.; Jeon, E.J.; Jeong, I.S.; et al. Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 2012, 108, 191802. [Google Scholar] [CrossRef]
- Abe, Y.; Aberle, C.; Akiri, T.; dos Anjos, J.C.; Ardellier, F.; Barbosa, A.F.; Baxter, A.; Bergevin, M.; Bernstein, A.; Bezerra, T.J.C.; et al. Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment. Phys. Rev. Lett. 2012, 108, 131801. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys. 2010, 82, 2701. [Google Scholar] [CrossRef]
- King, S.F.; Luhn, C. Neutrino mass and mixing with discrete symmetry. Rep. Prog. Phys. 2013, 76, 056201. [Google Scholar] [CrossRef]
- Ludl, P.O. Comments on the classification of the finite subgroups of SU(3). J. Phys. A 2011, 44, 069502, Erratum in J. Phys. A 2012, 45, 069502.. [Google Scholar] [CrossRef]
- Feruglio, F.; Romanino, A. Lepton flavor symmetries. Rev. Mod. Phys. 2021, 93, 015007. [Google Scholar] [CrossRef]
- Hall, L.J.; Murayama, H.; Weiner, N. Neutrino mass anarchy. Phys. Rev. Lett. 2000, 84, 2572. [Google Scholar] [CrossRef] [PubMed]
- Grossman, Y.; Neubert, M. Neutrino masses and mixings in non-factorizable geometry. Phys. Lett. B 2000, 474, 361. [Google Scholar] [CrossRef]
- Antusch, S.; King, S.F. Charged lepton corrections to neutrino mixing angles and CP phases revisited. Phys. Lett. B 2005, 631, 42. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Smirnov, A.Y. Neutrino mass and new physics. Ann. Rev. Nucl. Part. Sci. 2006, 56, 569–628. [Google Scholar] [CrossRef]
- Ibáñez, L.E.; Uranga, A.M. Neutrino Majorana masses from string theory instanton effects. J. High Energy Phys. 2007, 0703, 052. [Google Scholar] [CrossRef]
- Bouchard, V.; Heckman, J.J.; Seo, J.; Vafa, C. F-theory and neutrinos: Kaluza-Klein dilution of flavor hierarchy. J. High Energy Phys. 2009, 1001, 061. [Google Scholar] [CrossRef]
- Bauer, B.; Levaillant, C. A new set of generators and a physical interpretation for the SU(3) finite subgroup D(9, 1, 1; 2, 1, 1). Quantum Inf. Proc. 2013, 12, 2509–2521. [Google Scholar] [CrossRef]
- Levaillant, C. On some projective unitary qutrit gates. Quantum Inf. Process. 2025, 24, 159. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez Garcia, C.; Maltoni, M.; Martinez-Soler, I.; Pinheiro, J.P.; Schwetz, T. Parameter Ranges. Three-Neutrino Fit (NuFIT 6.0 ed.). Available online: http://www.nu-fit.org/?q=node/294 (accessed on 10 December 2024).
- Miranda, O.G.; Valle, J.W.F. Neuytrino oscillations and the seesaw origin of neutrino mass. Nucl. Phys. B 2016, 908, 436–455. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S.H.; Stern, A.; Freedman, M.; Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083. [Google Scholar] [CrossRef]
- Planat, M.; Amaral, M. What ChatGPT has to say about its topological structure; the anyon hypothesis. Mach. Learn. Knowl. Extra. 2024, 6, 2876–2891. [Google Scholar] [CrossRef]
- Planat, M. Baryonic matter, Ising anyons and strong quantum gravity. Int. J. Topol. 2025, 2, 4. [Google Scholar] [CrossRef]
- Rowell, E.; Stong, R.; Wang, Z. On the classification of modular tensor categories. Commun. Math. Phys. 2009, 292, 343–389. [Google Scholar] [CrossRef]
- Rowell, E.C.; Wang, Z. Mathematics of topological quantum computing. Bull. Amer. Math. Soc 2017, 55, 183–238. [Google Scholar] [CrossRef]
- Cui, S.X.; Wang, Z. Universal quantum computation with metaplectic anyons. J. Math. Phys. 2015, 56, 032202. [Google Scholar] [CrossRef]
- Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Informationally complete characters for quark and lepton mixings. Symmetry 2020, 12, 1000. [Google Scholar] [CrossRef]
- Kauffman, L.H.; Lins, S.L. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds; Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 1994; Volume 134. [Google Scholar]
- Wang, Z. Topological Quantum Computing; American Mathematical Society: Providence, RI, USA, 2010; 115p. [Google Scholar]
- Source Code for Strawberry Fields. Decompositions. Available online: https://strawberryfields.readthedocs.io/en/stable/code/api/strawberryfields.decompositions.takagi.html (accessed on 1 January 2025).
- Fritzsch, H.; Xing, Z.Z. Large leptonic flavour mixing and the mass spectrum of leptons. Phys. Lett. B 1998, 440, 313–318. [Google Scholar] [CrossRef]
- Zsigmond, A.A.; for the LEGEND Collaboration. LEGEND: The future of neutrinoless double-beta decay search with germanium detectors. J. Phys. Conf. Ser. 2020, 1468, 012111. [Google Scholar] [CrossRef]
- Adhikari, G.; Kharusi, S.A.; Angelico, E.; Anton, G.; Arnquist, I.J.; Badhrees, I.; Bane, J.; Belov, V.; Bernard, E.P.; Bhatta, T.; et al. nEXO: Neutrinoless double beta decay search beyond 1028-year half-life sensitivity. J. Phys. G 2022, 49, 015104. [Google Scholar] [CrossRef]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; et al. Deep Underground Neutrino Experiment (DUNE): Far Detector Technical Design Report, Volume II: DUNE Physics. arXiv 2020, arXiv:2002.03005. [Google Scholar]
- Abe, K.; Abe, K.; Aihara, H.; Aimi, A.; Akutsu, R.; Andreopoulos, C.; Anghel, I.; Anthony, L.H.V.; Antonova, M.; Ashida, Y.; et al. LEGEND2020 Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- An, F.; An, G.; An, Q.; Antonelli, V.; Baussan, E.; Beacom, J.; Bezrukov, L.; Blyth, S.; Brugnera, R.; Avanzin, M.B.; et al. Neutrino physics. J. Phys. G 2016, 43, 030401. [Google Scholar]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The Window to the Extreme Universe. J. Phys. G 2021, 48, 060501. [Google Scholar] [CrossRef]
Angle | This Work | NuFIT Best Fit | NuFIT | NuFIT |
---|---|---|---|---|
– | – | |||
– | – | |||
– | – | |||
(p)/ (s) | – (p)/– (s) | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Planat, M. Neutrino Mixing Matrix with SU(2)4 Anyon Braids. Quantum Rep. 2025, 7, 30. https://doi.org/10.3390/quantum7030030
Planat M. Neutrino Mixing Matrix with SU(2)4 Anyon Braids. Quantum Reports. 2025; 7(3):30. https://doi.org/10.3390/quantum7030030
Chicago/Turabian StylePlanat, Michel. 2025. "Neutrino Mixing Matrix with SU(2)4 Anyon Braids" Quantum Reports 7, no. 3: 30. https://doi.org/10.3390/quantum7030030
APA StylePlanat, M. (2025). Neutrino Mixing Matrix with SU(2)4 Anyon Braids. Quantum Reports, 7(3), 30. https://doi.org/10.3390/quantum7030030