Superoperator Approach to the Lindbladian Dynamics of a Mirror-Field System
Abstract
:1. Introduction
2. The Basic Optomechanical System
3. Optomechanical System with Damping in the Mechanical Oscillator
3.1. Obtaining the Standard Hamiltonian in the Optomechanical Master Equation
3.2. Analytical Solution: Damping of the Mechanical Oscillator
3.3. Coherent States as Initial Conditions
3.4. Steady State
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aspelmeyer, M.; Meystre, P.; Schwab, K. Quantum optomechanics. Phys. Today 2012, 65, 29–35. [Google Scholar] [CrossRef]
- Meystre, P. A short walk through quantum optomechanics. Ann. Der Phys. 2013, 525, 215–233. [Google Scholar] [CrossRef]
- Bowen, W.P.; Milburn, G.J. Quantum Optomechanics; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar]
- Marquardt, F.; Girvin, S.M. Optomechanics. Physics 2009, 2, 40. [Google Scholar] [CrossRef]
- Metcalfe, M. Applications of cavity optomechanics. Appl. Phys. Rev. 2014, 1, 031105. [Google Scholar]
- Schliesser, A.; Rivière, R.; Anetsberger, G.; Arcizet, O.; Kippenberg, T.J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 2008, 4, 415–419. [Google Scholar]
- Chan, J.; Alegre, T.P.M.; Safavi-Naeini, A.H.; Hill, J.T.; Krause, A.; Gröblacher, S.; Aspelmeyer, M.; Painter, O. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 2011, 478, 89–92. [Google Scholar] [PubMed]
- Brooks, D.W.; Botter, T.; Schreppler, S.; Purdy, T.P.; Brahms, N.; Stamper-Kurn, D.M. Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 2012, 488, 476–480. [Google Scholar] [PubMed]
- Teufel, J.D.; Donner, T.; Castellanos-Beltran, M.A.; Harlow, J.W.; Lehnert, K.W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 2009, 4, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Bemani, F.; Roknizadeh, R.; Naderi, M.H. Theoretical scheme for the realization of the sphere-coherent motional states in an atom-assisted optomechanical cavity. J. Opt. Soc. Am. B 2015, 32, 1360–1368. [Google Scholar] [CrossRef]
- Mancini, S.; Man’Ko, V.I.; Tombesi, P. Ponderomotive control of quantum macroscopic coherence. Phys. Rev. A 1997, 55, 3042. [Google Scholar] [CrossRef]
- Bose, S.; Jacobs, K.; Knight, P.L. Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 1997, 56, 4175. [Google Scholar]
- Ventura-Velázquez, C.; Rodríguez-Lara, B.M.; Moya-Cessa, H.M. Operator approach to quantum optomechanics. Phys. Scr. 2015, 90, 068010. [Google Scholar] [CrossRef]
- Arévalo-Aguilar, L.M.; Moya-Cessa, H.M. Cavidad con pérdidas: Una descripción usando superoperadores. Rev. Mex. Física 1995, 42, 675–683. [Google Scholar]
- Phoenix, S.J. Wave-packet evolution in the damped oscillator. Phys. Rev. A 1990, 41, 5132. [Google Scholar]
- Law, C.K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys. Rev. A 1995, 51, 2537. [Google Scholar] [CrossRef]
- Primo, A.G.; Pinho, P.V.; Benevides, R.; Gröblacher, S.; Wiederhecker, G.S.; Alegre, T.P.M. Dissipative Optomechanics in High-Frequency Nanomechanical Resonators. Nat. Commun. 2023, 14, 5793. [Google Scholar] [CrossRef]
- Mancini, S.; Tombesi, P. Quantum noise reduction by radiation pressure. Phys. Rev. A 1994, 49, 4055. [Google Scholar] [CrossRef] [PubMed]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766. [Google Scholar] [CrossRef]
- Medina-Dozal, L.; Récamier, J.; Moya-Cessa, H.M.; Soto-Eguibar, F.; Román-Ancheyta, R.; Ramos-Prieto, I.; Urzúa, A.R. Temporal evolution of a driven optomechanical system in the strong coupling regime. Phys. Scr. 2023, 99, 015114. [Google Scholar]
- Wei, J.; Norman, E. On global representations of the solutions of linear differential equations as a product of exponentials. Proc. Am. Math. Soc. 1964, 15, 327–334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Márquez, M.A.; Moya-Cessa, H.M. Superoperator Approach to the Lindbladian Dynamics of a Mirror-Field System. Quantum Rep. 2025, 7, 15. https://doi.org/10.3390/quantum7020015
García-Márquez MA, Moya-Cessa HM. Superoperator Approach to the Lindbladian Dynamics of a Mirror-Field System. Quantum Reports. 2025; 7(2):15. https://doi.org/10.3390/quantum7020015
Chicago/Turabian StyleGarcía-Márquez, Marco A., and Héctor M. Moya-Cessa. 2025. "Superoperator Approach to the Lindbladian Dynamics of a Mirror-Field System" Quantum Reports 7, no. 2: 15. https://doi.org/10.3390/quantum7020015
APA StyleGarcía-Márquez, M. A., & Moya-Cessa, H. M. (2025). Superoperator Approach to the Lindbladian Dynamics of a Mirror-Field System. Quantum Reports, 7(2), 15. https://doi.org/10.3390/quantum7020015