Blocky Diagonalized Scattering Matrices in Chaotic Scattering with Direct Processes
Abstract
:1. Introduction
2. Results
2.1. Statistical Distribution of T in the Presence of Direct Processes for
2.2. Statistical Distribution of T for in the Absence of Direct Processes
2.3. Average and Variance of T in the Absence of Direct Processes for Arbitrary N
3. Discussion
4. Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Parameterization of Circular Ensembles for N = 2
Appendix B. Calculation of the Average and Variance of T for β = 4, for Arbitrary N
References
- Gopar, V.A.; Martínez-Mares, M.; Mello, P.A.; Baranger, H.U. The invariant measure for scattering matrices with block symmetries. J. Phys. A Math. Gen. 1996, 29, 881–888. [Google Scholar] [CrossRef]
- Baranger, H.U.; Mello, P.A. Reflection symmetric ballistic microstructures: Quantum transport properties. Phys. Rev. B 1996, 54, 14297–14300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zyczkowski, K. Scattering matrices with block symmetries. Phys. Rev. E 1997, 56, 2257–2260. [Google Scholar] [CrossRef]
- Martínez-Mares, M.; Mello, P.A. Electronic transport through ballistic chaotic cavities: Reflection symmetry, direct processes, and symmetry breaking. Phys. Rev. E 2001, 63, 016205. [Google Scholar] [CrossRef] [Green Version]
- Schanze, H.; Stöckmann, H.-J.; Martínez-Mares, M.; Lewenkopf, C.H. Universal transport properties of open microwave cavities with and without time-reversal symmetry. Phys. Rev. E 2005, 71, 016223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Mares, M.; Castaño, E. Effect of spatial reflection symmetry on the distribution of the parametric conductance derivative in ballistic chaotic cavities. Phys. Rev. E 2005, 71, 036201. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Mares, M. Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities. Phys. Rev. E 2005, 72, 036202. [Google Scholar] [CrossRef] [Green Version]
- Gopar, V.A.; Rotter, S.; Schomerus, H. Transport in chaotic quantum dots: Effects of spatial symmetries which interchange the leads. Phys. Rev. B 2006, 73, 165308. [Google Scholar] [CrossRef] [Green Version]
- Kopp, M.; Schomerus, H.; Rotter, S. Staggered repulsion of transmission eigenvalues in symmetric open mesoscopic systems. Phys. Rev. B 2008, 78, 075312. [Google Scholar] [CrossRef] [Green Version]
- Whitney, R.S.; Marconcini, P.; Macucci, M. Huge Conductance Peak Caused by Symmetry in Double Quantum Dots. Phys. Rev. Lett. 2009, 102, 186802. [Google Scholar] [CrossRef] [PubMed]
- Whitney, R.S.; Schomerus, H.; Kopp, M. Semiclassical transport in nearly symmetric quantum dots. I. Symmetry breaking in the dot. Phys. Rev. E 2009, 80, 056209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitney, R.S.; Schomerus, H.; Kopp, M. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads. Phys. Rev. E 2009, 80, 056210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Mares, M.; Castaño, E. Scattering matrix of elliptically polarized waves. Rev. Mex. Fís. 2010, 56, 207–212. [Google Scholar]
- Juárez-Villegas, L.A.; Martínez-Mares, M. Information Entropy Approach for a Disorderless One-Dimensional Lattice. Quantum Rep. 2020, 2, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Mello, P.A.; Kumar, N. Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations; Oxford University Press: New York, NY, USA, 2004; p. 3. [Google Scholar]
- Dyson, F.J. Statistical Theory of the Energy Levels of Complx Systems. I. J. Math. Phys. 1961, 3, 140–156. [Google Scholar] [CrossRef]
- Feshbach, H.; Porter, C.E.; Weisskopf, V.F. Model for Nuclear Reactions with Neutrons. Phys. Rev. 1954, 96, 448–464. [Google Scholar] [CrossRef]
- Feshbach, H. Topics in the theory of nuclear reactions. In Reaction Dynamics; Montroll, E.W., Vineyard, G.H., Levy, M., Matthews, P.T., Eds.; Gordon and Breach: New York, NY, USA, 1973; p. 169. [Google Scholar]
- Mello, P.A. Theory of random matrices: Spectral statistics and scattering problems. In Mesoscopic Quantum Physics; Akkermans, E., Montambaux, G., Pichard, J.-L., Zinn-Justin, J., Eds.; North-Holland: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Büttiker, M. Symmetry of electrical conduction. IBM J. Res. Develop. 1988, 32, 317–334. [Google Scholar] [CrossRef]
- Chan, I.H.; Clarke, R.M.; Marcus, C.M.; Campman, K.; Gossard, A.C. Ballistic Conductance Fluctuations in Shape Space. Phys. Rev. Lett. 1995, 74, 3876–3879. [Google Scholar] [CrossRef] [PubMed]
- Beenakker, C.W.J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 1997, 69, 731–808. [Google Scholar] [CrossRef] [Green Version]
- Życzkowski, K. Random Matrices of Circular Symplectic Ensemble. In Chaos—The Interplay Between Stochastic and Deterministic Behaviour; Lecture Notes in Physics; Garbaczewski, P., Wolf, M., Weron, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 457. [Google Scholar]
- Mello, P.A. Averages on the unitary group and applications to the problem of disordered conductors. J. Phys. A Math. Gen. 1990, 23, 4061–4080. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Ramírez, F.; Martínez-Mares, M. Blocky Diagonalized Scattering Matrices in Chaotic Scattering with Direct Processes. Quantum Rep. 2023, 5, 12-21. https://doi.org/10.3390/quantum5010002
Castañeda-Ramírez F, Martínez-Mares M. Blocky Diagonalized Scattering Matrices in Chaotic Scattering with Direct Processes. Quantum Reports. 2023; 5(1):12-21. https://doi.org/10.3390/quantum5010002
Chicago/Turabian StyleCastañeda-Ramírez, Felipe, and Moisés Martínez-Mares. 2023. "Blocky Diagonalized Scattering Matrices in Chaotic Scattering with Direct Processes" Quantum Reports 5, no. 1: 12-21. https://doi.org/10.3390/quantum5010002
APA StyleCastañeda-Ramírez, F., & Martínez-Mares, M. (2023). Blocky Diagonalized Scattering Matrices in Chaotic Scattering with Direct Processes. Quantum Reports, 5(1), 12-21. https://doi.org/10.3390/quantum5010002