Equal Radiation Frequencies from Different Transitions in the Non-Relativistic Quantum Mechanical Hydrogen Atom
Abstract
:1. Introduction
2. A General Solution for All Equifrequency Transitions
3. Families of Equifrequency Transitions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lakhtakia, A. Models and Modelers of Hydrogen: Thales, Thomson, Rutherford, Bohr, Sommerfeld, Goudsmit, Heisenberg, Schr Dinger, Dirac, Sallhofer; World Scientific: Singapore, 1996. [Google Scholar]
- Mills, R.L. The hydrogen atom revisited. Int. J. Hydrogen Energy 2000, 25, 1171–1183. [Google Scholar] [CrossRef]
- Kantor, Y. Question 06/00: Hydrogen Atom, 2000. Available online: https://www.tau.ac.il/~kantor/QUIZ/00/Q06.00.html (accessed on 11 July 2022).
- Kantor, Y. Answer to the Question 06/00: Hydrogen Atom, 2000. See the Method Given by L.F. Perondi. Available online: https://www.tau.ac.il/~kantor/QUIZ/00/Q06.00.html (accessed on 11 July 2022).
- Mordell, L.J. Diophantine Equations; Academic Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Aoki, T.; Kanemitsu, S.; Nakahara, M.; Ohno, Y. Zeta Functions, Topology and Quantum Physics; Springer Science & Business Media: Berlin, Germany, 2008; Volume 14. [Google Scholar]
- Griffiths, D.J.; Schroeter, D.F. Introduction to Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Auvil, P.R.; Brown, L.M. The relativistic hydrogen atom: A simple solution. Am. J. Phys. 1978, 46, 679–681. [Google Scholar] [CrossRef]
- Lamb, W.E., Jr.; Retherford, R.C. Fine structure of the hydrogen atom. Part I. Phys. Rev. 1950, 79, 549. [Google Scholar] [CrossRef]
- Lamb, W.E., Jr.; Retherford, R.C. Fine structure of the hydrogen atom. Part II. Phys. Rev. 1951, 81, 222. [Google Scholar] [CrossRef]
- Long, C.T. Elementary Introduction to Number Theory; Prentice Hall: Hoboken, NJ, USA, 1987. [Google Scholar]
- Jacobson, M.J.; Williams, H.C. Solving the Pell Equation; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hindry, M.; Silverman, J.H. Diophantine Geometry: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 201. [Google Scholar]
- Halmos, P.R. Naive Set Theory; van Nostrand: Princeton, NJ, USA, 1960; p. 28. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, T.K.; Phan, T.V. Equal Radiation Frequencies from Different Transitions in the Non-Relativistic Quantum Mechanical Hydrogen Atom. Quantum Rep. 2022, 4, 272-276. https://doi.org/10.3390/quantum4030019
Do TK, Phan TV. Equal Radiation Frequencies from Different Transitions in the Non-Relativistic Quantum Mechanical Hydrogen Atom. Quantum Reports. 2022; 4(3):272-276. https://doi.org/10.3390/quantum4030019
Chicago/Turabian StyleDo, Tuan K., and Trung V. Phan. 2022. "Equal Radiation Frequencies from Different Transitions in the Non-Relativistic Quantum Mechanical Hydrogen Atom" Quantum Reports 4, no. 3: 272-276. https://doi.org/10.3390/quantum4030019
APA StyleDo, T. K., & Phan, T. V. (2022). Equal Radiation Frequencies from Different Transitions in the Non-Relativistic Quantum Mechanical Hydrogen Atom. Quantum Reports, 4(3), 272-276. https://doi.org/10.3390/quantum4030019