Solution to the Time-Dependent Coupled Harmonic Oscillators Hamiltonian with Arbitrary Interactions
Abstract
:1. Introduction
2. Ermakov–Lewis Invariant for Coupled Time-Dependent Harmonic Oscillators
The Classical Invariant
3. Two Coupled Time-Dependent Harmonic Oscillators
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moya-Cessa, H.; Soto-Eguibar, F.; Vargas-Martinez, J.M.; Juarez-Amaro, R.; Zuñiga-Segundo, A. Ion-laser interactions: The most complete solution. Phys. Rep. 2012, 513, 229–261. [Google Scholar] [CrossRef]
- Cronin, A.D.; Schmiedmayer, J.; Pritchard, D.E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 2009, 81, 1051. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 1987, 330, 769. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A.; Dziedzic, J.M. Optical trapping and manipulation of viruses and bacteria. Science 1987, 235, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Law, C.K. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium. Phys. Rev. A 1994, 49, 433. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; Guéry-Odelin, D.; Muga, J.G. Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.W.; del Campo, A. Shortcuts to adiabaticity assisted by counterdiabatic Born-Oppenheimer dynamics. New J. Phys. 2018, 20, 085003. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Klimov, A.B. Generation and detection of photons in a cavity with a resonantly oscillating boundary. Phys. Rev. A 1996, 53, 2664. [Google Scholar] [CrossRef] [PubMed]
- Román-Ancheyta, R.; Ramos-Prieto, I.; Perez-Leija, A.; Busch, K.; León-Montiel, R.D.J. Dynamical Casimir effect in stochastic systems: Photon harvesting through noise. Phys. Rev. A 2017, 96, 032501. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C.; Marto, J.; Moniz, P.V. Indefinite oscillators and black-hole evaporation. Ann. Phys. 2012, 18, 722–735. [Google Scholar] [CrossRef]
- Makarov, D.N. Coupled harmonic oscillators and their quantum entanglement. Phys. Rev. E 2018, 97, 042203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouquet, S.; Lewis, V.J. A second invariant for one-degree-of-freedom, time-dependent Hamiltonians given a first invariant. J. Math. Phys. 1996, 37, 5509–5517. [Google Scholar] [CrossRef]
- Ray, J.R.; Reid, J.L. Invariants for forced time-dependent oscillators and generalizations. Phys. Rev. A 1982, 26, 1042–1047. [Google Scholar] [CrossRef]
- Günther, N.J.; Leach, P.G.L. Generalized invariants for the time-dependent harmonic oscillator. J. Math. Phys. 1977, 18, 572–576. [Google Scholar] [CrossRef]
- Wolf, K.B. On Time-Dependent Quadratic Quantum Hamiltonians. SIAM J. Appl. Math. 1981, 40, 419–431. [Google Scholar] [CrossRef]
- Colegrave, R.K.; Mannan, M.A. Invariants for the time-dependent Harmonic Oscillator. J. Math. Phys. 1988, 29, 1580–1587. [Google Scholar] [CrossRef]
- Fernández Guasti, M.; Gil-Villegas, A. Orthogonal functions invariant for the time-dependent harmonic oscillator. Phys. Lett. A 2002, 292, 243–245. [Google Scholar] [CrossRef]
- Fring, A.; Tenney, R. Time-independent approximations for time-dependent optical potentials. arXiv 2019, arXiv:1906.08840. [Google Scholar]
- Moya-Cessa, H.; Guasti, M.F. Coherent states for the time dependent harmonic oscillator: The step function. Phys. Lett. A 2003, 311, 1–5. [Google Scholar] [CrossRef]
- Fernández Guasti, M.; Moya-Cessa, H. Amplitude and phase representation of quantum invariants for the time-dependent harmonic oscillator. Phys. Rev. A 2003, 67, 063803. [Google Scholar] [CrossRef] [Green Version]
- Lewis, H.R.; Leach, P.G.L. Exact invariants for a class of time-dependent non-linear Hamiltonian-systems. J. Math. Phys. 1982, 23, 165–175. [Google Scholar] [CrossRef]
- Guedes, I. Solution of the Schrodinger equation for the time-dependent linear potential. Phys. Rev. A 2001, 63, 034102. [Google Scholar] [CrossRef]
- Macedo, D.X.; Guedes, I. Time-dependent coupled harmonic oscillators. J. Math. Phys. 2012, 53, 052101. [Google Scholar] [CrossRef]
- Thylwe, K.-E.; Korsch, H.J. The ‘Ermakov-Lewis’ invariants for coupled linear oscillators. J. Phys. A 1998, 31, L279–L285. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Fernández Guasti, M. Time dependent quantum harmonic oscillator subject to a sudden change of mass: Continuous solution. Revista Mexicana De FíSica 2007, 53, 42–46. [Google Scholar]
- Ramos-Prieto, I.; Espinosa-Zuñiga, A.; Fernández-Guasti, M.; Moya-Cessa, H.M. Quantum harmonic oscillator with time dependent mass. Mod. Phys. Lett. B 2018, 32, 1850235. [Google Scholar] [CrossRef]
- Yeon, K.-H.; Kim, D.-H.; Um, C.-I.; George, T.F.; Pandey, L.N. Relations of canonical and unitary transformations for a general time-dependent quadratic Hamiltonian system. Phys. Rev. A 1997, 55, 4023–4029. [Google Scholar] [CrossRef]
- Ray, J.R. Exact solution of the time-dependent Schrödinger equation. Phys. Rev. A 1982, 22, 729–733. [Google Scholar] [CrossRef]
- Lewis, H.R. Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians. Phys. Rev. Lett. 1967, 18, 510–513. [Google Scholar] [CrossRef]
- de Ponte, M.A.; Santos, A.C. Adiabatic quantum games and phase-transition-like behavior between optimal strategies. Quantum Inf. Proc. 2018, 17, 149. [Google Scholar] [CrossRef] [Green Version]
- Levy, A.; Kiely, A.; Muga, J.G.; Kosloff, R.; Torrontegui, E. Noise resistant quantum control using dynamical invariants. New J. Phys. 2018, 20, 025006. [Google Scholar] [CrossRef]
- Barral, D.; Liñares, J. Quantum Light propagation in longitudinally inhomogeneous waveguides as a spatial Lewis-Ermakov physical invariance. Opt. Commun. 2016, 359, 61–65. [Google Scholar] [CrossRef]
- Barral, D.; Liñares, J. Spatial propagation of quantum light states in longitudinally inhomogeneous waveguides. J. Opt. Soc. Am. B 2015, 32, 1993–2002. [Google Scholar] [CrossRef]
- Perez-Leija, A.; Keil, R.; Moya-Cessa, H.; Szameit, A.; Christodoulides, D.N. Perfect transfer of path-entangled photons in Jx photonic lattices. Phys. Rev. A 2013, 87, 022303. [Google Scholar] [CrossRef]
- Perez-Leija, A.; Hernandez-Herrejon, J.C.; Moya-Cessa, H.; Szameit, A.; Christodoulides, D.N. Generating photon encoded W states in multiport waveguide array systems. Phys. Rev. A 2013, 87, 013842. [Google Scholar] [CrossRef]
- Fernández Guasti, M.; Moya-Cessa, H. Solution of the Schrödinger equation for time-dependent 1D harmonic oscillators using the orthogonal functions invariant. J. Phys. A 2003, 36, 2069–2076. [Google Scholar] [CrossRef]
- Fernández Guasti, M. Energy content in linear mechanical systems with arbitrary time dependence. Phys. Lett. A 2018, 382, 3231–3237. [Google Scholar] [CrossRef]
- Loudon, R.; Knight, P.L. Squeezed light. J. Mod. Opt. 1987, 34, 709–759. [Google Scholar] [CrossRef]
- Yuen, H.P. Two-photon coherent states of the radiation field. Phys. Rev. A 1976, 13, 2226–2243. [Google Scholar] [CrossRef] [Green Version]
- Caves, C.M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 1981, 23, 1693–1708. [Google Scholar] [CrossRef]
- Moya-Cessa, H.; Vidiella-Barranco, A. Interaction of squeezed states of light with two-level atoms. J. Mod. Opt. 1992, 39, 2481–2499. [Google Scholar] [CrossRef]
- Barnett, S.M.; Beige, A.; Ekert, A.; Garraway, B.M.; Keitel, C.H.; Kendon, V.; Lein, M.; Milburn, G.J.; Moya-Cessa, H.M.; Murao, M.; et al. Journeys from quantum optics to quantum technology. Prog. Quantum Electron. 2017, 54, 19–45. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urzúa, A.R.; Ramos-Prieto, I.; Fernández-Guasti, M.; Moya-Cessa, H.M. Solution to the Time-Dependent Coupled Harmonic Oscillators Hamiltonian with Arbitrary Interactions. Quantum Rep. 2019, 1, 82-90. https://doi.org/10.3390/quantum1010009
Urzúa AR, Ramos-Prieto I, Fernández-Guasti M, Moya-Cessa HM. Solution to the Time-Dependent Coupled Harmonic Oscillators Hamiltonian with Arbitrary Interactions. Quantum Reports. 2019; 1(1):82-90. https://doi.org/10.3390/quantum1010009
Chicago/Turabian StyleUrzúa, Alejandro R., Irán Ramos-Prieto, Manuel Fernández-Guasti, and Héctor M. Moya-Cessa. 2019. "Solution to the Time-Dependent Coupled Harmonic Oscillators Hamiltonian with Arbitrary Interactions" Quantum Reports 1, no. 1: 82-90. https://doi.org/10.3390/quantum1010009
APA StyleUrzúa, A. R., Ramos-Prieto, I., Fernández-Guasti, M., & Moya-Cessa, H. M. (2019). Solution to the Time-Dependent Coupled Harmonic Oscillators Hamiltonian with Arbitrary Interactions. Quantum Reports, 1(1), 82-90. https://doi.org/10.3390/quantum1010009