DSGF-YOLO: A Lightweight Deep Neural Network for Traffic Accident Detection and Severity Classifications
Abstract
1. Introduction
2. Related Works
3. Materials and Methods
3.1. Dataset Construction
3.2. DSGF-YOLO
3.2.1. Improvements with the G-CSA
3.2.2. Improvements with the FasterNet-Block
3.2.3. Evaluation Indicators
3.3. Accident Alert Transmission Mechanism
4. Results
4.1. Experimental Environment and Parameter Settings
4.2. Comparison with Mainstream Methods
4.3. Ablation Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, S.; Zhao, Z.; Shangguan, Q.; Fu, T.; Wang, J.; Wu, H. The existence and impacts of sequential traffic conflicts: Investigation of traffic conflict in sequences encountered by left-turning vehicles at signalized intersections. Accid. Anal. Prev. 2025, 215, 108015. [Google Scholar] [CrossRef] [PubMed]
- Katsamenis, I.; Bakalos, N.; Lappas, A.; Protopapadakis, E.; Martín-Portugués Montoliu, C.; Doulamis, A.; Doulamis, N.; Rallis, I.; Kalogeras, D. DORIE: Dataset of Road Infrastructure Elements—A Benchmark of YOLO Architectures for Real-Time Patrol Vehicle Monitoring. Sensors 2025, 25, 6653. [Google Scholar] [CrossRef]
- Hussain, F.; Ali, Y.; Li, Y.; Haque, M.M. Revisiting the hybrid approach of anomaly detection and extreme value theory for estimating pedestrian crashes using traffic conflicts obtained from artificial intelligence-based video analytics. Accid. Anal. Prev. 2024, 199, 107517. [Google Scholar] [CrossRef]
- Naser, Z.S.; Marouane, H.; Fakhfakh, A. Multi-Object-Based Efficient Traffic Signal Optimization Framework via Traffic Flow Analysis and Intensity Estimation Using UCB-MRL-CSFL. Vehicles 2025, 7, 72. [Google Scholar] [CrossRef]
- Khaled, L.B.; Rahman, M.; Ebu, I.A.; Ball, J.E. FlashLightNet: An End-to-End Deep Learning Framework for Real-Time Detection and Classification of Static and Flashing Traffic Light States. Sensors 2025, 25, 6423. [Google Scholar] [CrossRef]
- Yan, H.; Pan, S.; Zhang, S.; Wu, F.; Hao, M. Sustainable utilization of road assets concerning obscured traffic signs recognition. Proc. Inst. Civ. Eng. Eng. Sustain. 2025, 178, 124–134. [Google Scholar] [CrossRef]
- Zhao, S.; Gong, Z.; Zhao, D. Traffic signs and markings recognition based on lightweight convolutional neural network. Vis. Comput. 2024, 40, 559–570. [Google Scholar] [CrossRef]
- Liu, T.; Meidani, H. End-to-end heterogeneous graph neural networks for traffic assignment. Transp. Res. Part C Emerg. Technol. 2024, 165, 104695. [Google Scholar] [CrossRef]
- Talaat, F.M.; ZainEldin, H. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput. Appl. 2023, 35, 20939–20954. [Google Scholar] [CrossRef]
- Elassy, M.; Al-Hattab, M.; Takruri, M.; Badawi, S. Intelligent transportation systems for sustainable smart cities. Transp. Eng. 2024, 16, 100252. [Google Scholar] [CrossRef]
- Liang, R.; Jiang, M.; Li, S. YOLO-DPDG: A Dual-Pooling Dynamic Grouping Network for Small and Long-Distance Traffic Sign Detection. Appl. Sci. 2025, 15, 10921. [Google Scholar] [CrossRef]
- Yang, L.; He, Z.; Zhao, X.; Fang, S.; Yuan, J.; He, Y.; Li, S.; Liu, S. A Deep Learning Method for Traffic Light Status Recognition. J. Intell. Connect. Veh. 2023, 6, 173–182. [Google Scholar] [CrossRef]
- Hollósi, J. YOLO-Based Object and Keypoint Detection for Autonomous Traffic Cone Placement and Retrieval for Industrial Robots. Appl. Sci. 2025, 15, 10845. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Zhang, C.; Wang, B.; Tang, X. Integrating deep learning and clustering techniques to address imbalanced data in traffic accident severity prediction. J. Transp. Saf. Secur. 2025, 17, 1167–1194. [Google Scholar] [CrossRef]
- Mohana Deepti, M.; Badrinath, K.; Venkat, P.; Saideep, S. RFCNN: Traffic Accident Severity Prediction based on Decision Level Fusion of Machine and Deep Learning Model. Int. J. Adv. Res. Comput. Commun. Eng. 2025, 14, 389–404. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, B.; Yan, Y.; Guo, S.; Tian, G. A novel traffic accident detection method with comprehensive traffic flow features extraction. Signal Image Video Process. 2023, 17, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Yin, Y.; Li, L.; Wang, Z.; Zhou, Y. Small Object Detection in Traffic Scenes Based on Attention Feature Fusion. Sensors 2021, 21, 3031. [Google Scholar] [CrossRef]
- Li, K.; Guo, K.; Liang, Z.; Zhang, J.; Zhao, F. Traffic Accident Severity Prediction and Analysis via Spatio-Temporal Deep Learning: A ConvLSTM–Transformer Approach. Chaos Solitons Fractals 2025, 200, 117047. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Y.; Cheng, P.; Liu, Z.; Zhang, X. Hybrid CNN–Transformer Features for Visual Place Recognition. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 1109–1122. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Z.; Ge, H.; Sun, P.; Zhao, L. A Multimodal Deep Learning Approach for Predicting Traffic Accident Severity Using Crash Records, Road Geometry, and Textual Descriptions. Comput.-Aided Civ. Infrastruct. Eng. 2025, 40, 3773–3793. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, D.; Liu, H.; He, Y. KCS-YOLO: An Improved Algorithm for Traffic Light Detection under Low Visibility Conditions. Machines 2024, 12, 557. [Google Scholar] [CrossRef]
- Sundaresan Geetha, A.; Alif, M.A.R.; Hussain, M.; Allen, P. Comparative Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance Metrics and Model Efficacy. Vehicles 2024, 6, 1364–1382. [Google Scholar] [CrossRef]
- Xing, C.; Sun, H.; Yang, J. A Lightweight Traffic Sign Detection Model Based on Improved YOLOv8s for Edge Deployment in Autonomous Driving Systems Under Complex Environments. World Electr. Veh. J. 2025, 16, 478. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Kim, G.; Park, Y. Analyzing Performance of YOLOx for Detecting Vehicles in Bad Weather Conditions. Sensors 2024, 24, 522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Y.; Huo, Z.; Li, J.; Sun, Y.; Huang, H. USSC-YOLO: Enhanced Multi-Scale Road Crack Object Detection Algorithm for UAV Image. Sensors 2024, 24, 5586. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, F. Balancing Feature Symmetry: IFEM-YOLOv13 for Robust Underwater Object Detection Under Degradation. Symmetry 2025, 17, 1531. [Google Scholar] [CrossRef]
- Luan, T.; Zhou, S.; Zhang, Y.; Pan, W. Fast Identification and Detection Algorithm for Maneuverable Unmanned Aircraft Based on Multimodal Data Fusion. Mathematics 2025, 13, 1825. [Google Scholar] [CrossRef]
- Wei, F.; Wang, W. SCCA-YOLO: A Spatial and Channel Collaborative Attention Enhanced YOLO Network for Highway Autonomous Driving Perception System. Sci. Rep. 2025, 15, 6459. [Google Scholar] [CrossRef]
- Chai, Y.; Yao, X.; Chen, M.; Shan, S. FPFS-YOLO: An Insulator Defect Detection Model Integrating FasterNet and an Attention Mechanism. Sensors 2025, 25, 4165. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Ma, P.; Cai, Y. Research on a Dense Pedestrian-Detection Algorithm Based on an Improved YOLO11. Future Internet 2025, 17, 438. [Google Scholar] [CrossRef]
- Li, Z. Mamba with split-based pyramidal convolution and Kolmogorov-Arnold network-channel-spatial attention for electroencephalogram classification. Front. Sens. 2025, 6, 2673–5067. [Google Scholar] [CrossRef]
- Merolla, D.; Latorre, V.; Salis, A.; Boanelli, G. Improving Road Safety with AI: Automated Detection of Signs and Surface Damage. Computers 2025, 14, 91. [Google Scholar] [CrossRef]







| Environment Configuration | Value |
|---|---|
| Operating system | Ubuntu 20.04 (Cloud Environment) |
| CPU | Intel Xeon @ 2.20 GHz |
| GPU | NVIDIA A100 (NVIDIA A100-SXM4) |
| RAM | 80 GB |
| Development environment | Cloud-based Jupyter |
| Programming language | Python 3.12 |
| Hyperparameter | Value |
|---|---|
| Epochs | 500 |
| Batch size | 64 |
| Initial learning rate | 0.01 |
| Optimizer | SGD |
| Input image size | 640 × 640 |
| Algorithm | Batch Size | Precision/% | Recall/% | mAP50/% | mAP50-95/% | GFLOPS |
|---|---|---|---|---|---|---|
| DETR | 64 | 91.0 | 83.0 | 92.8 | 82.6 | 36.8 |
| Faster R-CNN | 64 | 90.2 | 83.0 | 92.2 | 80.6 | 37.5 |
| YOLOv5n | 64 | 95.1 | 82.7 | 90.2 | 79.2 | 7.2 |
| YOLOv8n | 64 | 95.9 | 85.0 | 90.5 | 80.7 | 8.2 |
| YOLO11n | 64 | 95.5 | 84.0 | 90.9 | 82.0 | 6.4 |
| YOLOv13n | 64 | 92.8 | 86.0 | 92.6 | 84.6 | 6.4 |
| DSGF-YOLO | 64 | 92.7 | 90.8 | 94.8 | 86.8 | 6.6 |
| G-CSA | FasterBlock | Precision/% | Recall/% | mAP50/% | mAP50-95/% | F2-Score/% |
|---|---|---|---|---|---|---|
| - | - | 92.8 | 86.0 | 92.6 | 84.6 | 89.3 |
| √ | - | 91.6 | 88.5 | 93.7 | 86.1 | 90.0 |
| - | √ | 96.7 | 85.7 | 92.5 | 85.2 | 90.9 |
| √ | √ | 92.7 | 90.8 | 94.8 | 86.8 | 91.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xie, H.; Lin, P. DSGF-YOLO: A Lightweight Deep Neural Network for Traffic Accident Detection and Severity Classifications. Vehicles 2025, 7, 153. https://doi.org/10.3390/vehicles7040153
Li W, Xie H, Lin P. DSGF-YOLO: A Lightweight Deep Neural Network for Traffic Accident Detection and Severity Classifications. Vehicles. 2025; 7(4):153. https://doi.org/10.3390/vehicles7040153
Chicago/Turabian StyleLi, Weijun, Huawei Xie, and Peiteng Lin. 2025. "DSGF-YOLO: A Lightweight Deep Neural Network for Traffic Accident Detection and Severity Classifications" Vehicles 7, no. 4: 153. https://doi.org/10.3390/vehicles7040153
APA StyleLi, W., Xie, H., & Lin, P. (2025). DSGF-YOLO: A Lightweight Deep Neural Network for Traffic Accident Detection and Severity Classifications. Vehicles, 7(4), 153. https://doi.org/10.3390/vehicles7040153
