Recent Trends in the Public Acceptance of Autonomous Vehicles: A Review
Abstract
:1. Introduction
2. The Current State and Technological Development Trends of Autonomous Driving Technology
3. Key Factors Influencing Autonomous Vehicle Acceptance
3.1. Trust, Cybersecurity, and Perceived Safety
3.2. User Experience and Interface Design
3.3. Social Influence and Media Impact
3.4. Legal and Regulatory Frameworks
3.5. Demographic Segmentation
4. AV Acceptance in Different Countries
4.1. China: Fast Growing Automatic Driving Technology
4.2. North America: Innovator and Early Adopter Trends
4.3. Europe: Balancing Innovation with Regulation
4.4. Asia: Technological Leapfrogging and Acceptance Patterns
4.5. Economic Considerations
5. Shaping the Future of Autonomous Mobility
6. Typical Perceived Risks
7. Trends, Implications, Barriers and Opportunities, and Strategic Roadmaps
8. Conclusions
- -
- To investigate how public acceptance of autonomous vehicles evolves over time as technology advances and real-world deployments occur.
- -
- To conduct comparative studies across regions to understand cultural influences on AV acceptance and resistance.
- -
- To explore how varying legal frameworks affect public trust and the adoption of autonomous vehicles.
- -
- To investigate public views on the ethical dilemmas posed by autonomous driving, such as decision-making in critical situations.
- -
- To study the broader effects of AV adoption on employment, transportation equity, and urban infrastructure.
Funding
Acknowledgments
Conflicts of Interest
References
- Pappalardo, G.; Caponetto, R.; Varrica, R.; Cafiso, S. Assessing the operational design domain of lane support system for automated vehicles in different weather and road conditions. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 631–644. [Google Scholar] [CrossRef]
- Barberi, S.; Arena, F.; Termine, F.; Canale, A.; Olayode, I.O.; Zuccalà, Y. BIM applied to intelligent transport systems. AIP Conf. Proc. 2022, 2611, 060011. [Google Scholar] [CrossRef]
- Alex, F.J.; Tan, G.; Kyei, S.K.; Ansah, P.O.; Agyeman, P.K.; Fayzullayevich, J.V.; Olayode, I.O. Transmission of viruses and other pathogenic microorganisms via road dust: Emissions, characterization, health risks, and mitigation measures. Atmos. Pollut. Res. 2023, 14, 101642. [Google Scholar] [CrossRef]
- Ji, W.; Yuan, Q.; Cheng, G.; Yu, S.; Wang, M.; Shen, Z.; Yang, T. Traffic accidents of autonomous vehicles based on knowledge mapping: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 1061–1073. [Google Scholar] [CrossRef]
- Ukaegbu, U.F.; Tartibu, L.K.; Okwu, M.O.; Olayode, I.O. Integrating Unmanned Aerial Vehicle and Deep Learning Algorithm for Pipeline Monitoring and Inspection in the Oil and Gas Sector. In Proceedings of the International Conference on Artificial Intelligence and Its Applications, Virtual, 20–21 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mattas, K.; Botzoris, G.; Papadopoulos, B. Safety aware fuzzy longitudinal controller for automated vehicles. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 568–581. [Google Scholar] [CrossRef]
- Stead, D.; Vaddadi, B. Automated vehicles and how they may affect urban form: A review of recent scenario studies. Cities 2019, 92, 125–133. [Google Scholar] [CrossRef]
- Yao, Q.; Tian, Y.; Wang, Q.; Wang, S. Control Strategies on Path Tracking for Autonomous Vehicle: State of the Art and Future Challenges. IEEE Access 2020, 8, 161211–161222. [Google Scholar] [CrossRef]
- Laub, J.A. Assessing the Servant Organization; Development of the Organizational Leadership Assessment (OLA) Model. Dissertation Abstracts International. Procedia-Soc. Behav. Sci. 1999, 1, 1–10. Available online: https://olagroup.com/Images/mmDocument/Laub%20Dissertation%20Complete%2099.pdf (accessed on 3 September 2024).
- Wang, C.; Xie, Y.; Huang, H.; Liu, P. A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling. Accid. Anal. Prev. 2021, 157, 106157. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Zhang, Y.; Xu, J. A bibliometric review on stability and reinforcement of special soil subgrade based on CiteSpace. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 223–243. [Google Scholar] [CrossRef]
- Shen, Z.; Ji, W.; Yu, S.; Cheng, G.; Yuan, Q.; Han, Z.; Liu, H.; Yang, T. Mapping the knowledge of traffic collision Reconstruction: A scientometric analysis in CiteSpace, VOSviewer, and SciMAT. Sci. Justice 2023, 63, 19–37. [Google Scholar] [CrossRef]
- Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Rus, D.; Ang, M.H. Perception, planning, control, and coordination for autonomous vehicles. Machines 2017, 5, 6. [Google Scholar] [CrossRef]
- Chowdhury, A.; Karmakar, G.; Kamruzzaman, J.; Jolfaei, A.; Das, R. Attacks on self-driving cars and their countermeasures: A survey. IEEE Access 2020, 8, 207308–207342. [Google Scholar] [CrossRef]
- Shladover, S.E. Connected and automated vehicle systems: Introduction and overview. J. Intell. Transp. Syst. Technol. Plan. Oper. 2018, 22, 190–200. [Google Scholar] [CrossRef]
- Miskolczi, M.; Földes, D.; Munkácsy, A.; Jászberényi, M. Urban mobility scenarios until the 2030s. Sustain. Cities Soc. 2021, 72, 103029. [Google Scholar] [CrossRef]
- Stilgoe, J.; Cohen, T. Rejecting acceptance: Learning from public dialogue on self-driving vehicles. Sci. Public Policy 2021, 48, 849–859. [Google Scholar] [CrossRef]
- Litman, T. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning. Transp. Res. Board Annu. Meet. 2014, 42, 36–42. [Google Scholar] [CrossRef]
- Piao, J.; McDonald, M.; Hounsell, N.; Graindorge, M.; Graindorge, T.; Malhene, N. Public Views towards Implementation of Automated Vehicles in Urban Areas. Transp. Res. Procedia 2016, 14, 2168–2177. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the Importance of Trust on Adopting an Autonomous Vehicle. Int. J. Hum. Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Verberne, F.M.F.; Ham, J.; Midden, C.J.H. Trust in smart systems: Sharing driving goals and giving information to increase trustworthiness and acceptability of smart systems in cars. Hum. Factors 2012, 54, 799–810. [Google Scholar] [CrossRef]
- Eltved, M. Modelling Passenger Behaviour in Mixed Scheduleand Frequency-Based Public Transport Systems. Sustainability 2022, 4, 1–17. Available online: https://orbit.dtu.dk/en/publications/modelling-passenger-behaviour-in-mixed-scheduleand-frequency-base (accessed on 19 February 2025).
- Casley, S.V.; Jardim, A.S.; Quartulli, A.M. A Study of Public Acceptance of Autonomous Cars. Bachelor’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2013; pp. 1–146. Available online: https://web.wpi.edu/Pubs/E-project/Available/E-project-043013-155601/unrestricted/A_Study_of_Public_Acceptance_of_Autonomous_Cars.pdf (accessed on 9 September 2024).
- Lee, J.; Chang, H.; Park, Y. Il Influencing factors on social acceptance of autonomous vehicles and policy implications. In Proceedings of the PICMET 2018—Portland International Conference on Management of Engineering and Technology: Managing Technological Entrepreneurship: The Engine for Economic Growth, Proceedings, Honolulu, HI, USA, 19–23 August 2018. [Google Scholar] [CrossRef]
- Zmud, J.P.; Sener, I.N. Towards an Understanding of the Travel Behavior Impact of Autonomous Vehicles. Transp. Res. Procedia 2017, 25, 2500–2519. [Google Scholar] [CrossRef]
- McGehee, D.V.; Brewer, M.; Schwarz, C.; Smith, B.W.; University of Iowa, I.C.; Transportation, I.D.; Administration, F.H. Review of Automated Vehicle Technology: Policy and Implementation Implications; University of Iowa: Iowa City, IA, USA, 2015; 41p. Available online: https://rosap.ntl.bts.gov/view/dot/30702 (accessed on 10 September 2024).
- Nordhoff, S.; De Winter, J.; Kyriakidis, M.; Van Arem, B.; Happee, R. Acceptance of Driverless Vehicles: Results from a Large Cross-National Questionnaire Study. J. Adv. Transp. 2018, 2018, 5382192. [Google Scholar] [CrossRef]
- Schoettle, B.; Sivak, M. Public Opinion about Self-Driving Vehicles in China, India, Japan, the U.S., the U.K., and Australia; University of Michigan, Transportation Research Institute: Ann Arbor, MI, USA; Available online: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/109433/103139.pdf?sequence=1&isAllowed=y (accessed on 10 September 2024).
- Merat, N.; De Waard, D. Human factors implications of vehicle automation: Current understanding and future directions. Transp. Res. Part F Traffic Psychol. Behav. 2014, 27, 193–195. [Google Scholar] [CrossRef]
- Liu, H.; Yang, R.; Wang, L.; Liu, P. Evaluating Initial Public Acceptance of Highly and Fully Autonomous Vehicles. Int. J. Hum. Comput. Interact. 2019, 35, 919–931. [Google Scholar] [CrossRef]
- Du, X.; Shen, Y.; Chang, R.; Ma, J. The exceptionists of Chinese roads: The effect of road situations and ethical positions on driver aggression. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 719–729. [Google Scholar] [CrossRef]
- Varghese, J.Z.; Boone, R.G. Overview of Autonomous Vehicle Sensors and Systems. In Proceedings of the 2015 International Conference on Operations Excellence and Service Engineering, Orlando, FL, USA, 10–11 September 2015; pp. 178–191. [Google Scholar]
- Lyalina, B.T. AI-Based Systems for Autonomous Vehicle Nighttime Safety and Navigation. J. Artif. Intell. Res. Appl. 2023, 3, 82–103. [Google Scholar]
- Hakak, S.; Gadekallu, T.R.; Maddikunta, P.K.R.; Ramu, S.P.; M, P.; De Alwis, C.; Liyanage, M. Autonomous vehicles in 5G and beyond: A survey. Veh. Commun. 2023, 39, 100551. [Google Scholar] [CrossRef]
- Dikmen, M.; Burns, C.M. Autonomous Driving in the Real World: Experiences with Tesla Autopilot and Summon. In Proceedings of the Automotive UI 2016—8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Proceedings, Ann Arbor, MI, USA, 24–26 October 2016; Volume 2016, pp. 225–228. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Z.; Zhao, X. Road tests of self-driving vehicles: Affective and cognitive pathways in acceptance formation. Transp. Res. Part A Policy Pract. 2019, 124, 354–369. [Google Scholar] [CrossRef]
- Dai, J.; Li, R.; Liu, Z.; Lin, S. Impacts of the introduction of autonomous taxi on travel behaviors of the experienced user: Evidence from a one-year paid taxi service in Guangzhou, China. Transp. Res. Part C Emerg. Technol. 2021, 130, 103311. [Google Scholar] [CrossRef]
- Mo, E.; Asia, D. The Current State and Future of Autonomous Driving Technology; DigiTimes Inc.: Taipei, Taiwan, 2023; Available online: https://www.digitimes.com/news/a20231121PR201/autonomous-driving-av-tesla-waymo.html (accessed on 19 February 2025).
- Zolfagharian, S.; Irizarry, J.; Ressang, A.; Nourbakhsh, M.; Gheisari, M. Automated safety planning approach for residential construction sites in Malaysia. Int. J. Constr. Manag. 2014, 14, 134–147. [Google Scholar] [CrossRef]
- Giannaros, A.; Karras, A.; Theodorakopoulos, L.; Karras, C.; Kranias, P.; Schizas, N.; Kalogeratos, G.; Tsolis, D. Autonomous Vehicles: Sophisticated Attacks, Safety Issues, Challenges, Open Topics, Blockchain, and Future Directions. J. Cybersecur. Priv. 2023, 3, 493–543. [Google Scholar] [CrossRef]
- Chen, S.; Zong, S.; Chen, T.; Huang, Z.; Chen, Y.; Labi, S. A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure. Sustainability 2023, 15, 258. [Google Scholar] [CrossRef]
- Sever, T.; Contissa, G. Automated driving regulations–Where are we now? Transp. Res. Interdiscip. Perspect. 2024, 24, 101033. [Google Scholar] [CrossRef]
- Adnan Yusuf, S.; Khan, A.; Souissi, R. Vehicle-to-everything (V2X) in the autonomous vehicles domain–A technical review of communication, sensor, and AI technologies for road user safety. Transp. Res. Interdiscip. Perspect. 2024, 23, 100980. [Google Scholar] [CrossRef]
- Othman, K. Public acceptance and perception of autonomous vehicles: A comprehensive review. AI Ethics 2021, 1, 355–387. [Google Scholar] [CrossRef]
- Othman, K. Exploring the implications of autonomous vehicles: A comprehensive review. Innov. Infrastruct. Solut. 2022, 7, 165. [Google Scholar] [CrossRef]
- Nastjuk, I.; Herrenkind, B.; Marrone, M.; Brendel, A.B.; Kolbe, L.M. What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user’s perspective. Technol. Forecast. Soc. Change 2020, 161, 120319. [Google Scholar] [CrossRef]
- Wilson, K.M.; Yang, S.; Roady, T.; Kuo, J.; Lenné, M.G. Driver trust & mode confusion in an on-road study of level-2 automated vehicle technology. Saf. Sci. 2020, 130, 104845. [Google Scholar] [CrossRef]
- Lyons, J.B.; Koltai, K.S.; Ho, N.T.; Johnson, W.B.; Smith, D.E.; Shively, R.J. Engineering Trust in Complex Automated Systems. Ergon. Des. 2016, 24, 13–17. [Google Scholar] [CrossRef]
- Taeihagh, A.; Lim, H.S.M. Governing autonomous vehicles: Emerging responses for safety, liability, privacy, cybersecurity, and industry risks. Transp. Rev. 2019, 39, 103–128. [Google Scholar] [CrossRef]
- Papadimitriou, E.; Farah, H.; van de Kaa, G.; Santoni de Sio, F.; Hagenzieker, M.; van Gelder, P. Towards common ethical and safe ‘behaviour’ standards for automated vehicles. Accid. Anal. Prev. 2022, 174, 106724. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. Exploring Ethical Considerations in AI-driven Autonomous Vehicles: Balancing Safety and Privacy. J. Artif. Intell. Gen. Sci. ISSN3006-4023 2024, 2, 125–138. [Google Scholar] [CrossRef]
- Krügel, S.; Uhl, M. The risk ethics of autonomous vehicles: An empirical approach. Sci. Rep. 2024, 14, 960. [Google Scholar] [CrossRef]
- Durlik, I.; Miller, T.; Kostecka, E.; Zwierzewicz, Z.; Łobodzińska, A. Cybersecurity in Autonomous Vehicles—Are We Ready for the Challenge? Electronics 2024, 13, 2654. [Google Scholar] [CrossRef]
- Detjen, H.; Faltaous, S.; Pfleging, B.; Geisler, S.; Schneegass, S. How to Increase Automated Vehicles’ Acceptance through In-Vehicle Interaction Design: A Review. Int. J. Hum. Comput. Interact. 2021, 37, 308–330. [Google Scholar] [CrossRef]
- Alonso, V.; De La Puente, P. System transparency in shared autonomy: A mini review. Front. Neurorobot. 2018, 12, 83. [Google Scholar] [CrossRef]
- Basantis, A.; Miller, M.; Doerzaph, Z.; Neurauter, M.L. Assessing Alternative Approaches for Conveying Automated Vehicle “Intentions”. IEEE Trans. Hum.-Mach. Syst. 2021, 51, 622–631. [Google Scholar] [CrossRef]
- Carsten, O.; Martens, M.H. How can humans understand their automated cars? HMI principles, problems and solutions. Cogn. Technol. Work 2019, 21, 3–20. [Google Scholar] [CrossRef]
- De Visser, E.J.; Cohen, M.; Freedy, A.; Parasuraman, R. A design methodology for trust cue calibration in cognitive agents. In Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2014; Volume 8525, pp. 251–262. [Google Scholar] [CrossRef]
- Zmud, J.; Sener, I.N.; Wagner, J. Consumer Acceptance and Travel Behavior Impacts of Automated Vehicles. 2016. Available online: http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/PRC-15-49-F.pdf (accessed on 19 October 2024).
- Gold, C.; Körber, M.; Hohenberger, C.; Lechner, D.; Bengler, K. Trust in Automation–Before and After the Experience of Take-over Scenarios in a Highly Automated Vehicle. Procedia Manuf. 2015, 3, 3025–3032. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, W.; Zhang, Y.; Tao, D.; Li, G.; Qu, X. What drives people to use automated vehicles? A meta-analytic review. Accid. Anal. Prev. 2021, 159, 106270. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Waarden, L.; Cloarec, J. “Baby, you can drive my car”: Psychological antecedents that drive consumers’ adoption of AI-powered autonomous vehicles. Technovation 2022, 109, 102348. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, K.; Min, H.; Wang, Z.; Zhao, X.; Liu, P. What drives people to accept automated vehicles? Findings from a field experiment. Transp. Res. Part C Emerg. Technol. 2018, 95, 320–334. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Zeng, J.; Zhu, H.; Zhu, H. Automated vehicle acceptance in China: Social influence and initial trust are key determinants. Transp. Res. Part C Emerg. Technol. 2020, 112, 220–233. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, Y.; Zheng, J. Modelling the acceptance of fully autonomous vehicles: A media-based perception and adoption model. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 80–91. [Google Scholar] [CrossRef]
- Siegrist, M. Trust and Risk Perception: A Critical Review of the Literature. Risk Anal. 2021, 41, 480–490. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part C Emerg. Technol. 2019, 98, 207–220. [Google Scholar] [CrossRef]
- Kim, S.; He, X.; van Egmond, R.; Happee, R. Designing user interfaces for partially automated Vehicles: Effects of information and modality on trust and acceptance. Transp. Res. Part F Traffic Psychol. Behav. 2024, 103, 404–419. [Google Scholar] [CrossRef]
- Rashidi, T.H.; Najmi, A.; Haider, A.; Wang, C.; Hosseinzadeh, F. What we know and do not know about connected and autonomous vehicles. Transp. A Transp. Sci. 2020, 16, 987–1029. [Google Scholar] [CrossRef]
- Schwartz, L.; Gronier, G.; Hermen, J. Acceptation des véhicules entièrement autonomes par les piétons lors de situation de traversée de route: Expérimentation en environnement simulé: Acceptance of Fully Autonomous Vehicles by Pedestrians in Road Crossing Situations: Experimentation in simulated environment. In Proceedings of the 33rd Conference on l’Interaction Humain-Machine, Namur, Belgium, 5–8 April 2022; pp. 1–15. [Google Scholar] [CrossRef]
- Bastola, A.; Brinkley, J.; Wang, H.; Razi, A. Driving Towards Inclusion: Revisiting In-Vehicle Interaction in Autonomous Vehicles. arXiv 2024, arXiv:2401.14571. [Google Scholar] [CrossRef]
- Kacperski, C.; Ulloa, R.; Wautelet, J.; Vogel, T.; Kutzner, F. Creating inclusive mobility systems: Towards age and education sensitive interventions for enhancing autonomous vehicle acceptance. arXiv 2020, arXiv:2311.16780. [Google Scholar]
- Xia, T.; Lin, X.; Sun, Y.; Liu, T. An Empirical Study of the Factors Influencing Users’ Intention to Use Automotive AR-HUD. Sustainability 2023, 15, 5028. [Google Scholar] [CrossRef]
- Schneider, T.; Hois, J.; Rosenstein, A.; Metzl, S.; Gerlicher, A.R.S.; Ghellal, S.; Love, S. Don’t fail me! The Level 5 Autonomous Driving Information Dilemma regarding Transparency and User Experience. In Proceedings of the 28th International Conference on Intelligent User Interfaces, Sydney, Australia, 27–31 March 2023; pp. 540–552. [Google Scholar] [CrossRef]
- Giron, J.; Sela, Y.; Barenboim, L.; Gilboa-Freedman, G.; Amichai-Hamburger, Y. Persona-PhysioSync AV: Personalized Interaction through Personality and Physiology Monitoring in Autonomous Vehicles. Sensors 2024, 24, 1977. [Google Scholar] [CrossRef]
- Flohr, L.A.; Schuß, M.; Wallach, D.P.; Krüger, A.; Riener, A. Designing for passengers’ information needs on fellow travelers: A comparison of day and night rides in shared automated vehicles. Appl. Ergon. 2024, 116, 104198. [Google Scholar] [CrossRef]
- Sitinjak, C.; Simic, V.; Pamucar, D. Psychological factors shaping public acceptance of the adoption of autonomous vehicles in Indonesia. J. Transp. Health 2024, 34, 101726. [Google Scholar] [CrossRef]
- Tan, Z.; Dai, N.; Su, Y.; Zhang, R.; Li, Y.; Wu, D.; Li, S. Human–Machine Interaction in Intelligent and Connected Vehicles: A Review of Status Quo, Issues, and Opportunities. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13954–13975. [Google Scholar] [CrossRef]
- Ghasri, M.; Vij, A. The potential impact of media commentary and social influence on consumer preferences for driverless cars. Transp. Res. Part C Emerg. Technol. 2021, 127, 103132. [Google Scholar] [CrossRef]
- Kim, J.; Rasouli, S.; Timmermans, H.J.P. Social networks, social influence and activity-travel behaviour: A review of models and empirical evidence. Transp. Rev. 2018, 38, 499–523. [Google Scholar] [CrossRef]
- Liu, P.; Yang, R.; Xu, Z. Public Acceptance of Fully Automated Driving: Effects of Social Trust and Risk/Benefit Perceptions. Risk Anal. 2019, 39, 326–341. [Google Scholar] [CrossRef]
- Lim, M.S.C.; Molenaar, A.; Brennan, L.; Reid, M.; McCaffrey, T. Young Adults’ Use of Different Social Media Platforms for Health Information: Insights From Web-Based Conversations. J. Med. Internet Res. 2022, 24, e23656. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.; Dimitrakopoulos, G. An empirical investigation on consumers’ intentions towards autonomous driving. Transp. Res. Part C Emerg. Technol. 2018, 95, 773–784. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Axsen, J.; Orlebar, C.; Skippon, S. Social influence and consumer preference formation for pro-environmental technology: The case of a U.K. workplace electric-vehicle study. Ecol. Econ. 2013, 95, 96–107. [Google Scholar] [CrossRef]
- Sherwin, H.; Chatterjee, K.; Jain, J. An exploration of the importance of social influence in the decision to start bicycling in England. Transp. Res. Part A Policy Pract. 2014, 68, 32–45. [Google Scholar] [CrossRef]
- Bartle, C.; Avineri, E.; Chatterjee, K. Online information-sharing: A qualitative analysis of community, trust and social influence amongst commuter cyclists in the UK. Transp. Res. Part F Traffic Psychol. Behav. 2013, 16, 60–72. [Google Scholar] [CrossRef]
- Ghasri, M.; Ardeshiri, A.; Rashidi, T. Perception towards electric vehicles and the impact on consumers’ preference. Transp. Res. Part D Transp. Environ. 2019, 77, 271–291. [Google Scholar] [CrossRef]
- Brown, A.; Gonder, J.; Repac, B. An Analysis of Possible Energy Impacts of Automated Vehicles. In Lecture Notes in Mobility; Springer: Cham, Switzerland, 2014; pp. 137–153. [Google Scholar] [CrossRef]
- Hevelke, A.; Nida-Rümelin, J. Responsibility for Crashes of Autonomous Vehicles: An Ethical Analysis. Sci. Eng. Ethics 2015, 21, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.; Kaye, S.A.; Pradhan, A.K. Psychosocial factors associated with intended use of automated vehicles: A simulated driving study. Accid. Anal. Prev. 2018, 115, 202–208. [Google Scholar] [CrossRef]
- Shabanpour, R.; Shamshiripour, A.; Mohammadian, A. Modeling adoption timing of autonomous vehicles: Innovation diffusion approach. Transportation 2018, 45, 1607–1621. [Google Scholar] [CrossRef]
- Bass, F.M. A new product growth for model consumer durables. Manag. Sci. 2004, 50, 1825–1832. [Google Scholar] [CrossRef]
- Yu, P. Diffusion of Innovation theory. In Implementation Science: The Key Concepts; Routledge: Abingdon, UK, 2022; pp. 59–61. ISBN 9781000583410. [Google Scholar]
- Liu, P. Positive, negative, ambivalent, or indifferent? Exploring the structure of public attitudes toward self-driving vehicles on public roads. Transp. Res. Part A Policy Pract. 2020, 142, 27–38. [Google Scholar] [CrossRef]
- Kyriakidis, M.; Happee, R.; De Winter, J.C.F. Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transp. Res. Part F Traffic Psychol. Behav. 2015, 32, 127–140. [Google Scholar] [CrossRef]
- Hansson, L. Regulatory governance in emerging technologies: The case of autonomous vehicles in Sweden and Norway. Res. Transp. Econ. 2020, 83, 100967. [Google Scholar] [CrossRef]
- Lim, H.S.M.; Taeihagh, A. Algorithmic decision-making in AVs: Understanding ethical and technical concerns for smart cities. Sustainability 2019, 11, 5791. [Google Scholar] [CrossRef]
- Sadaf, M.; Iqbal, Z.; Javed, A.R.; Saba, I.; Krichen, M.; Majeed, S.; Raza, A. Connected and Automated Vehicles: Infrastructure, Applications, Security, Critical Challenges, and Future Aspects. Technologies 2023, 11, 117. [Google Scholar] [CrossRef]
- Li, W.; Hsu, C.Y. GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS Int. J. Geo-Inf. 2022, 11, 385. [Google Scholar] [CrossRef]
- Kaltenhäuser, B.; Werdich, K.; Dandl, F.; Bogenberger, K. Market development of autonomous driving in Germany. Transp. Res. Part A Policy Pract. 2020, 132, 882–910. [Google Scholar] [CrossRef]
- Jing, P.; Yuan, D.; Du, L.; Xu, G.; Chen, Y.; Zhan, F. Research of acceptance of autonomous vehicles technologybased on mapping knowledge domain. Jiangsu Daxue Xuebao (Ziran Kexue Ban)/Journal Jiangsu Univ. (Nat. Sci. Ed.) 2023, 44, 14–21. [Google Scholar] [CrossRef]
- Wu, J.; Liao, H.; Wang, J.W.; Chen, T. The role of environmental concern in the public acceptance of autonomous electric vehicles: A survey from China. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 37–46. [Google Scholar] [CrossRef]
- Feys, M.; Rombaut, E.; Vanhaverbeke, L. Does a test ride influence attitude towards autonomous vehicles? A field experiment with pretest and posttest measurement. Sustainability 2021, 13, 5387. [Google Scholar] [CrossRef]
- Jing, P.; Wang, W.; Wu, L.L. Acceptance of Autonomous Vehicles for the Elderly. Zhongguo Gonglu Xuebao/China J. Highw. Transp. 2021, 34, 158–171. [Google Scholar] [CrossRef]
- Othman, K. Investigating how the public acceptance of autonomous vehicles evolve with the changes in the level of knowledge: A demographic analysis. Cogent Eng. 2023, 10, 2220502. [Google Scholar] [CrossRef]
- Park, J.; Hong, E.P.; Le, H.T. Adopting autonomous vehicles: The moderating effects of demographic variables. J. Retail. Consum. Serv. 2021, 63, 102687. [Google Scholar] [CrossRef]
- Ansarinejad, M.; Ansarinejad, K.; Lu, P.; Huang, Y.; Tolliver, D. Autonomous Vehicles in Rural Areas: A Review of Challenges, Opportunities, and Solutions. Appl. Sci. 2025, 15, 4195. [Google Scholar] [CrossRef]
- Dianin, A.; Gidam, M.; Ravazzoli, E.; Hauger, G. International Journal of Transportation Science and Technology Collective accessibility impacts of public transport automation on rural areas: The case study of Mühlwald, South Tyrol. Int. J. Transp. Sci. Technol. 2024; in press. [Google Scholar] [CrossRef]
- Yuen, K.F.; Huyen, D.T.K.; Wang, X.; Qi, G. Factors influencing the adoption of shared autonomous vehicles. Int. J. Environ. Res. Public Health 2020, 17, 4868. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zheng, Z.; Whitehead, J.; Washington, S.; Perrons, R.K.; Page, L. Preference heterogeneity in mode choice for car-sharing and shared automated vehicles. Transp. Res. Part A Policy Pract. 2020, 132, 633–650. [Google Scholar] [CrossRef]
- Patel, R.K.; Etminani-Ghasrodashti, R.; Kermanshachi, S.; Rosenberger, J.M.; Foss, A. Exploring willingness to use shared autonomous vehicles. Int. J. Transp. Sci. Technol. 2023, 12, 765–778. [Google Scholar] [CrossRef]
- Wali, B.; Khattak, A.J. A joint behavioral choice model for adoption of automated vehicle ride sourcing and carsharing technologies: Role of built environment & sustainable travel behaviors. Transp. Res. Part C Emerg. Technol. 2022, 136, 103557. [Google Scholar] [CrossRef]
- Haboucha, C.J.; Ishaq, R.; Shiftan, Y. User preferences regarding autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2017, 78, 37–49. [Google Scholar] [CrossRef]
- Wang, Z.; Safdar, M.; Zhong, S.; Liu, J.; Xiao, F. Public Preferences of Shared Autonomous Vehicles in Developing Countries: A Cross-National Study of Pakistan and China. J. Adv. Transp. 2021, 2021, 5141798. [Google Scholar] [CrossRef]
- Webb, J.; Wilson, C.; Kularatne, T. Will people accept shared autonomous electric vehicles? A survey before and after receipt of the costs and benefits. Econ. Anal. Policy 2019, 61, 118–135. [Google Scholar] [CrossRef]
- Kassens-Noor, E.; Kotval-Karamchandani, Z.; Cai, M. Willingness to ride and perceptions of autonomous public transit. Transp. Res. Part A Policy Pract. 2020, 138, 92–104. [Google Scholar] [CrossRef]
- Gurumurthy, K.M.; Kockelman, K.M. Modeling Americans’ autonomous vehicle preferences: A focus on dynamic ride-sharing, privacy & long-distance mode choices. Technol. Forecast. Soc. Change 2020, 150, 119792. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Cugurullo, F.; Gueriau, M.; Dusparic, I. Can autonomous vehicles enable sustainable mobility in future cities? Insights and policy challenges from user preferences over different urban transport options. Cities 2021, 112, 103134. [Google Scholar] [CrossRef]
- Shatanawi, M.; Hajouj, M.; Edries, B.; Mészáros, F. The Interrelationship between Road Pricing Acceptability and Self-Driving Vehicle Adoption: Insights from Four Countries. Sustainability 2022, 14, 12798. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, X.; Fu, P.; Luo, G.; Shi, P. A review of China’s automotive industry policy: Recent developments and future trends. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 867–895. [Google Scholar] [CrossRef]
- Qin, Q.; Zhou, Z.; Zhou, J.; Huang, Z.; Zeng, X.; Fan, B. Sentiment and attention of the Chinese public toward electric vehicles: A big data analytics approach. Eng. Appl. Artif. Intell. 2024, 127, 107216. [Google Scholar] [CrossRef]
- Su, Y.S.; Huang, H.; Daim, T.; Chien, P.W.; Peng, R.L.; Karaman Akgul, A. Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis. Technol. Forecast. Soc. Change 2023, 196, 122817. [Google Scholar] [CrossRef]
- Xu, L.; He, B.; Zhou, H.; He, J. Impact and revolution on law on road traffic safety by autonomous driving technology in China. Comput. Law Secur. Rev. 2023, 51, 105906. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, F.; Liu, Z.; Song, H. Effects of nine typical technologies for primary autonomous vehicles on road safety in China. iScience 2023, 26, 106109. [Google Scholar] [CrossRef]
- Winkler, K.-C. Autonomous Vehicles—Regulation in Germany and the US and Its Impact on the German Car Industry. 2019. Available online: http://arno.uvt.nl/show.cgi?fid=149595 (accessed on 19 February 2025).
- Tan, S.Y.; Taeihagh, A. Adaptive governance of autonomous vehicles: Accelerating the adoption of disruptive technologies in Singapore. Gov. Inf. Q. 2021, 38, 101546. [Google Scholar] [CrossRef]
- Ki, J. A Comparative Analysis of Autonomous Vehicle Policies among Korea, Japan, and France. FFJ Discuss. Pap. Ser. 2020, 20–02, 2–57. Available online: https://hal.science/hal-02562482 (accessed on 19 February 2025).
- Moody, J.; Bailey, N.; Zhao, J. Public perceptions of autonomous vehicle safety: An international comparison. Saf. Sci. 2020, 121, 634–650. [Google Scholar] [CrossRef]
- Kapser, S.; Abdelrahman, M. Acceptance of autonomous delivery vehicles for last-mile delivery in Germany–Extending UTAUT2 with risk perceptions. Transp. Res. Part C Emerg. Technol. 2020, 111, 210–225. [Google Scholar] [CrossRef]
- Khan, S.M.; Chowdhury, M.; Morris, E.A.; Deka, L. Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions. J. Infrastruct. Syst. 2019, 25, 03119001. [Google Scholar] [CrossRef]
- Ye, X.; Sui, X.; Wang, T.; Yan, X.; Chen, J. Research on parking choice behavior of shared autonomous vehicle services by measuring users’ intention of usage. Transp. Res. Part F Traffic Psychol. Behav. 2022, 88, 81–98. [Google Scholar] [CrossRef]
- Yuen, K.F.; Chua, G.; Wang, X.; Ma, F.; Li, K.X. Understanding public acceptance of autonomous vehicles using the theory of planned behaviour. Int. J. Environ. Res. Public Health 2020, 17, 4419. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Kockelman, K.M.; Singh, A. Assessing public opinions of and interest in new vehicle technologies: An Austin perspective. Transp. Res. Part C Emerg. Technol. 2016, 67, 1–14. [Google Scholar] [CrossRef]
- Benleulmi, A.Z.; Blecker, T. Investigating the factors influencing the acceptance of fully autonomous cars. Proc. Hambg. Int. Conf. Logist. 2017, 23, 99–115. Available online: https://www.econstor.eu/handle/10419/209304 (accessed on 19 February 2025).
- Yuen, K.F.; Cai, L.; Qi, G.; Wang, X. Factors influencing autonomous vehicle adoption: An application of the technology acceptance model and innovation diffusion theory. Technol. Anal. Strateg. Manag. 2021, 33, 505–519. [Google Scholar] [CrossRef]
- Sanbonmatsu, D.M.; Strayer, D.L.; Yu, Z.; Biondi, F.; Cooper, J.M. Cognitive underpinnings of beliefs and confidence in beliefs about fully automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2018, 55, 114–122. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Zheng, J.; Zhao, X.; Du, P.; Tan, H. Acceptance Factors for Younger Passengers in Shared Autonomous Vehicles. In Cross-Cultural Design. Applications in Cultural Heritage, Tourism, Autonomous Vehicles, and Intelligent Agents, Proceedings of the 13th International Conference, CCD 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, 24–29 July 2021; Springer International Publishing: Cham, Switzerland, 2021; Volume 12773, pp. 212–224. [Google Scholar] [CrossRef]
- Antonakopoulou, A.; Vlahogianni, E.; Karaseitanidis, G.; Patatouka, E.; Portouli, E.; Amditis, A.; Raptis, O.; Latsa, E. A research approach for studying the a priori acceptance of autonomous passenger transportation towards sustainable urban mobility planning. In Human Factors in Transportation; AHFE International: Orlando, FL, USA, 2023; Volume 95. [Google Scholar] [CrossRef]
- Tang, T.; Chen, J.; Guo, Y.; Sheng, D.; Li, X.; Anastasopoulos, P.C. Intention to adopt autonomous vehicles in China: A comparative study among residents in different-sized cities. Transp. Lett. 2024, 1–20. [Google Scholar] [CrossRef]
- Li, X.; Zou, J.; Agrawal, S.; Guo, Y.; Tang, T.; Feng, X. Role of policy and consumer attitudes in people’s intention to use autonomous vehicles: A comparative study in China and the USA. Transportation 2024. [Google Scholar] [CrossRef]
- Lazányi, K. Perceived Risks of Autonomous Vehicles. Risks 2023, 11, 26. [Google Scholar] [CrossRef]
- McColluch, B. Self-Driving Cars Will Be on French Roads by 2022. Available online: https://www.connexionfrance.com/news/self-driving-cars-will-be-on-french-roads-by-2022/395910 (accessed on 16 January 2025).
- Du, N.; Robert, L.; Yang, X.J. Cross-Cultural Investigation of the Effects of Explanations on Drivers’ Trust, Preference, and Anxiety in Highly Automated Vehicles. Transp. Res. Rec. 2023, 2677, 554–561. [Google Scholar] [CrossRef]
- Bellone, M.; Ismailogullari, A.; Kantala, T.; Mäkinen, S.; Soe, R.M.; Kyyrö, M.Å. A cross-country comparison of user experience of public autonomous transport. Eur. Transp. Res. Rev. 2021, 13, 19. [Google Scholar] [CrossRef]
- Edelmann, A.; Stümper, S.; Petzoldt, T. Cross-cultural differences in the acceptance of decisions of automated vehicles. Appl. Ergon. 2021, 92, 103346. [Google Scholar] [CrossRef]
- West, D.M. Moving Forward: Self-Driving Vehicles in China, Europe, Japan, Korea, and the United States; Center for Technology Innovation at Brookings: Washington, DC, USA, 2016; pp. 1–32. [Google Scholar]
- Currie, G. Lies, damned lies, AVs, shared mobility, and urban transit futures. J. Public Transp. 2018, 21, 19–30. [Google Scholar] [CrossRef]
- Abuelsamid, S.; Alexander, D.; Jerram, L. Navigant Research Leaderboard Report: Automated Driving. Navig. Res. 2017. Available online: http://62.nl.dealer-preview.co/SiteAssets/LB-AV-17-Navigant-Research_FINAL.pdf (accessed on 16 January 2025).
- Sedat Sonko; Emmanuel Augustine Etukudoh; Kenneth Ifeanyi Ibekwe; Valentine Ikenna Ilojianya; Cosmas Dominic Daudu A comprehensive review of embedded systems in autonomous vehicles: Trends, challenges, and future directions. World J. Adv. Res. Rev. 2024, 21, 2009–2020. [CrossRef]
- Nikitas, A.; Vitel, A.E.; Cotet, C. Autonomous vehicles and employment: An urban futures revolution or catastrophe? Cities 2021, 114, 103203. [Google Scholar] [CrossRef]
- Bachute, M.R.; Subhedar, J.M. Autonomous Driving Architectures: Insights of Machine Learning and Deep Learning Algorithms. Mach. Learn. Appl. 2021, 6, 100164. [Google Scholar] [CrossRef]
- Ryan, M. The Future of Transportation: Ethical, Legal, Social and Economic Impacts of Self-driving Vehicles in the Year 2025. Sci. Eng. Ethics 2020, 26, 1185–1208. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Kalra, N.; Stanley, K.; Sorensen, P.; Samaras, C.; Oluwatola, O. Autonomous Vehicle Technology: A Guide for Policymakers; RAND: Santa Monica, CA, USA, 2016. [Google Scholar] [CrossRef]
- Nielsen, P.; Dahanayaka, M.; Perera, H.N.; Thibbotuwawa, A.; Kilic, D.K. A systematic review of vehicle routing problems and models in multi-echelon distribution networks. Supply Chain Anal. 2024, 7, 100072. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K. Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations for Capitalizing on Self-Driven Vehicles. Transp. Res. Part A Policy Pract. 2013. pre-print. Available online: https://www.caee.utexas.edu/prof/kockelman/public_html/trb14enoavs.pdf (accessed on 16 January 2025).
- Zhang, Q.; Wallbridge, C.D.; Jones, D.M.; Morgan, P.L. Public perception of autonomous vehicle capability determines judgment of blame and trust in road traffic accidents. Transp. Res. Part A Policy Pract. 2024, 179, 103887. [Google Scholar] [CrossRef]
- Alshaafee, A.A.A.; Iahad, N.A. Enhanced net valence model (NVM) for the adoption of autonomous vehicles (AVs) by novice drivers. In Proceedings of the 2019 6th International Conference on Research and Innovation in Information Systems, ICRIIS, Johor Bahru, Malaysia, 2–3 December 2019. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, J.; Wang, S.; Wang, J. Understanding consumers’ willingness to use ride-sharing services: The roles of perceived value and perceived risk. Transp. Res. Part C Emerg. Technol. 2019, 105, 504–519. [Google Scholar] [CrossRef]
- Lin, Y.; Wen, M.M.; Yu, J. Enterprise Risk Management: Strategic Antecedents, Risk Integration, and Performance. N. Am. Actuar. J. 2012, 16, 1–28. [Google Scholar] [CrossRef]
- Jing, P.; Xu, G.; Chen, Y.; Shi, Y.; Zhan, F. The determinants behind the acceptance of autonomous vehicles: A systematic review. Sustainability 2020, 12, 1719. [Google Scholar] [CrossRef]
- Yang, Q.; Pang, C.; Liu, L.; Yen, D.C.; Michael Tarn, J. Exploring consumer perceived risk and trust for online payments: An empirical study in China’s younger generation. Comput. Hum. Behav. 2015, 50, 9–24. [Google Scholar] [CrossRef]
- Waung, M.; McAuslan, P.; Lakshmanan, S. Trust and intention to use autonomous vehicles: Manufacturer focus and passenger control. Transp. Res. Part F Traffic Psychol. Behav. 2021, 80, 328–340. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Park, Y.; Lee, S.; Ha, T. Autonomous vehicles can be shared, but a feeling of ownership is important: Examination of the influential factors for intention to use autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2019, 107, 411–422. [Google Scholar] [CrossRef]
- Menon, N.; Pinjari, A.R.; Zhang, Y.; Zou, L. Consumer Perception and Intended Adoption of Autonomous Vehicle Technology Findings from a University Population Survey. In Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Man, S.S.; Xiong, W.; Chang, F.; Chan, A.H.S. Critical Factors Influencing Acceptance of Automated Vehicles by Hong Kong Drivers. IEEE Access 2020, 8, 109845–109856. [Google Scholar] [CrossRef]
- Sperling, D. Three Revolutions: Steering Automated, Shared, and Electric Vehicles to a Better Future; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9781610919067. [Google Scholar]
- Krueger, R.; Rashidi, T.H.; Rose, J.M. Preferences for shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2016, 69, 343–355. [Google Scholar] [CrossRef]
- Widen, W.H.; Koopman, P. Autonomous Vehicle Regulation & Trust: The Impact of Failures to Comply with Standards. UCLA J. Law Technol. 2022, 27, 169–261. Available online: www.uclajolt.com (accessed on 16 January 2025).
- Luo, Q.; Saigal, R.; Chen, Z.; Yin, Y. Accelerating the adoption of automated vehicles by subsidies: A dynamic games approach. Transp. Res. Part B Methodol. 2019, 129, 226–243. [Google Scholar] [CrossRef]
Year | Company | Country | Name of Car | Level | Technology | Type of System Used | Name of Inventor | References |
---|---|---|---|---|---|---|---|---|
1925 | Lincoln Motor Company | USA | The Ghost Car | 0 | Early experimental autonomous vehicle using remote control | Remote control | Ernst Dickmanns | www.me.lincoln.com |
1980 | Mercedes-Benz | Germany | Mercedes-Benz 124 | 2 | Lane-keeping, adaptive cruise control, early automated systems | Cruise control, lane centering | Joseph Gallitzendörfer and Peter Pfeiffer | www.mercedes-benz.com |
1986 | Mercedes-Benz | Germany | S-Class (W126 Prototype) | 1 | Anti-lock braking system (ABS), adaptive cruise control (Prototype) | Driver assistance system with early adaptive features | Mercedes-Benz R&D Team | https://mercedes-benz-archive.com/ |
1994 | Carnegie Mellon | USA | No specific car name | 3 | Development of the “Navlab” with basic autonomous functions | AI and computer vision | Raj Rajkumar, John Dolgov | www.cmu.edu/ |
1995 | Mitsubishi Motors | Japan | Diamante | 1 | Distance warning system | Radar-based monitoring system | Mitsubishi R&D Division | https://www.mitsubishi-motors.com/jp/ |
1999 | Mercedes-Benz | Germany | S-Class (W220) | 1 | Distronic (first adaptive cruise control) | Radar-based adaptive cruise control | Mercedes-Benz engineers | https://group.mercedes-benz.com/en/ |
2003 | Toyota | Japan | Harrier (Lexus RX 300) | 1 | Laser cruise control | Laser-based adaptive cruise control | Toyota engineers | https://global.honda/en/ |
2004 | DARPA | USA | Various (e.g., Stanley) | 3 | DARPA grand challenge: first fully autonomous vehicles. | LIDAR, GPS, computer vision | Sebastian Thrun | https://www.darpa.mil |
2006 | Honda | Japan | Accord (European model) | 1 | Collision mitigation braking system (CMBS) | Radar and camera-based emergency braking assistance | Honda Advanced Safety R&D Team | https://global.toyota/en/ |
2009 | Waymo | USA | Toyota Prius | 3 | Google’s self-driving car project, using LIDAR and cameras | LIDAR, cameras, AI | Sebastian Thrun, Chris Urmson | https://waymo.com/ |
2013 | Tesla Motors | United States | Model S | 1 | Autopilot (enhanced adaptive cruise control) | Camera and radar-based driver assistance | Tesla Autopilot team under Elon Musk’s direction | https://www.tesla.com/ |
2015 | Tesla | USA | Tesla Model S | 2 | Autopilot: automated driving features like lane centering | Cameras, radar, ultrasonic sensors | Elon Musk, JB Straubel | https://www.tesla.com/ |
2020 | Waymo | USA | Chrysler Pacifica | 4 | Fully autonomous, driverless ride-hailing service in Arizona | LIDAR, cameras, AI | John Krafcik, Chris Urmson | https://waymo.com/ |
2023 | Cruise (GM) | USA | Chevrolet Bolt EV | 5 | Fully autonomous driving in urban environments | LIDAR, cameras, AI | Kyle Vogt, Dan Kan | https://www.cruise.com/ |
No. | Study Title | Country/Region | Year | General AV Acceptance | Key Factors Influencing Acceptance | Key Findings | Refs. |
---|---|---|---|---|---|---|---|
1 | AV Adoption in Different-Sized Chinese Cities | China | 2024 | Higher in larger cities | City size, infrastructure, AV exposure | Residents in larger cities are more likely to adopt AVs | [140] |
2 | Policy & Attitudes Toward AVs in China & USA | China, USA | 2024 | High (China), Moderate (USA) | Policy support, consumer attitudes | China more influenced by policy than the US | [141] |
3 | Perceived Risks of Autonomous Vehicles | Europe, US, Asia | 2023 | Mixed | National culture, risk perception, trust | Culture strongly shapes perceived AV risk | [142] |
4 | Self-Driving Cars on British Roads by 2026 | UK | 2023 | Low | Safety concerns, awareness, trust | Most Britons feel unsafe with AVs | [143] |
5 | Cross-Cultural Investigation of AV Explanations | China, Germany, US | 2022 | High (China), Moderate (US), Low (Germany) | Cultural context, explanation style | Detailed AV explanations preferred in high-context cultures | [144] |
6 | User Experience of Public Autonomous Transport | France, Sweden, Australia | 2021 | High (France), Moderate (Sweden), Low (Australia) | Exposure to AVs, perceived ease of use | Greater AV exposure leads to higher acceptance | [145] |
7 | Statistical Modeling of Cultural Differences in AV Acceptance | China, India, Japan, USA, UK, Australia | 2021 | High (China/India), Low (Japan/UK) | Cultural traits (Hofstede dimensions) | Collectivism and low uncertainty avoidance boost acceptance | [144] |
8 | Cross-Cultural Differences in AV Decision Acceptance | China, Japan, Germany, USA | 2020 | High (China), Moderate (US/Japan), Low (Germany) | Moral values, culture | China most accepting; Japan most risk-averse | [146] |
9 | AV Policy Comparison Across Major Economies | China, Europe, Japan, South Korea, USA | 2019 | High (China), Medium (South Korea), Cautious (Europe/Japan) | Innovation policy, government strategy | China leads with state-driven support | [147] |
10 | Public Perceptions of AV Safety in 51 Countries | Global | 2019 | High (developing countries) | Urbanization, education, income | Developing nations more optimistic | [129] |
11 | Acceptance of Driverless Vehicles Worldwide | 43 countries | 2018 | Higher in low-income countries | GDP, trust, enjoyment | Wealthier countries more skeptical | [27] |
12 | Global Public Opinion on Self-Driving Vehicles | China, India, Japan, USA, UK, Australia | 2015 | High (China/India), Moderate (US/UK), Low (Japan) | Tech optimism, safety, familiarity | Emerging economies most optimistic | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, T. Recent Trends in the Public Acceptance of Autonomous Vehicles: A Review. Vehicles 2025, 7, 45. https://doi.org/10.3390/vehicles7020045
Alqahtani T. Recent Trends in the Public Acceptance of Autonomous Vehicles: A Review. Vehicles. 2025; 7(2):45. https://doi.org/10.3390/vehicles7020045
Chicago/Turabian StyleAlqahtani, Thaar. 2025. "Recent Trends in the Public Acceptance of Autonomous Vehicles: A Review" Vehicles 7, no. 2: 45. https://doi.org/10.3390/vehicles7020045
APA StyleAlqahtani, T. (2025). Recent Trends in the Public Acceptance of Autonomous Vehicles: A Review. Vehicles, 7(2), 45. https://doi.org/10.3390/vehicles7020045