Digital Integrated Design and Assembly Planning Processes for Sports Vehicles Using the Example of a Skateboard
Abstract
:1. Introduction
2. Product Modelling in Graph-Based Design Languages
3. Assembly Planning
4. Production Planning
5. Digital Twin
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
AI | artificial intelligence |
CAD | computer-aided design |
DFMA | design for manufacturing and assembly |
DT | digital twin |
EBOMs | engineering bill of materials |
FMU | functional mock-up unit |
GBDL | graph-based design language |
HiL | hardware in the loop |
M2M | model-to-model |
M2T | model-to-text |
MBOMs | manufacturing bill of materials |
MBSE | model-based systems engineering |
ML | machine learning |
ODE | ordinary differential equation |
PDM | product data management |
PLM | product life-cycle management |
XAI | explainable artificial intelligence |
References
- He, L.; Ni, Y.; Ming, X.; Li, M.; Li, X. Integration of bill of materials with unified bill of materials model for commercial aircraft design to manufacturing. Concurr. Eng. 2014, 22, 206–217. [Google Scholar] [CrossRef]
- Demoly, F.; Dutartre, O.; Yan, X.T.; Eynard, B.; Kiritsis, D.; Gomes, S. Product relationships management enabler for concurrent engineering and product lifecycle management. Comput. Ind. 2013, 64, 833–848. [Google Scholar] [CrossRef]
- Layer, M.; Neubert, S.; Stelzer, R. Introducing a multipliable BOM-based automatic definition of information retrieval in plant engineering. Proc. Des. Soc. 2024, 4, 413–422. [Google Scholar] [CrossRef]
- Cinelli, M.; Ferraro, G.; Iovanella, A.; Lucci, G.; Schiraldi, M.M. A network perspective on the visualization and analysis of bill of materials. Int. J. Eng. Bus. Manag. 2017, 9, 1847979017732638. [Google Scholar] [CrossRef]
- Enomoto, A.; Yamamoto, N.; Yamamura, Y.; Sugawara, Y. Process knowledge integrated assembly sequence planning for control panel. Int. J. Autom. Technol. 2020, 14, 6–17. [Google Scholar] [CrossRef]
- Gräßler, I.; Wiechel, D.; Pottebaum, J. Role model of model-based systems engineering application. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 19th Drive Train Technology Conference (ATK 2021), Aachen, Germany, 9–11 March 2021; IOP Publishing: Bristol, UK, 2021; Volume 1097, p. 012003. [Google Scholar]
- Pulm, U.; Stetter, R. Systemic mechatronic function development. Proc. Des. Soc. 2021, 1, 2931–2940. [Google Scholar] [CrossRef]
- Stetter, R.; Pulm, U. Strategies and Methods for the Fault-Tolerant Function Development of Multi-Domain Systems. Appl. Sci. 2024, 14, 11646. [Google Scholar] [CrossRef]
- VDI/VDE. VDI/VDE 2006: Development of Cyber-Physical Mechatronic Systems (CPMS); Beuth: Berlin, Germany, 2020. [Google Scholar]
- Graessler, I.; Hentze, J. The new V-Model of VDI 2206 and its validation. At-Autom. 2020, 68, 312–324. [Google Scholar] [CrossRef]
- Eisenbart, B.; Gericke, K.; Blessing, L.T.; McAloone, T.C. A DSM-based framework for integrated function modelling: Concept, application and evaluation. Res. Eng. Des. 2017, 28, 25–51. [Google Scholar] [CrossRef]
- Prager, F.; Tröster, P.M.; Albers, A. The C&C2 Approach as a Thinking Tool in Mechatronic Systems. Procedia CIRP 2024, 128, 704–709. [Google Scholar]
- Striffler, N.; Voigt, T. Concepts and trends of virtual commissioning–A comprehensive review. J. Manuf. Syst. 2023, 71, 664–680. [Google Scholar] [CrossRef]
- Rueckert, P.; Goetsche, A.K.; Tracht, K. Assembly workshops in virtual reality as an integral part of the assembly planning process. Procedia CIRP 2024, 126, 793–798. [Google Scholar] [CrossRef]
- Unreal Engine. Epic Games. Cary, North Carolina, USA. 2025. Available online: https://www.unrealengine.com/ (accessed on 12 February 2025).
- Unity. Unity Technologies. San Francisco, California, USA. 2025. Available online: https://unity.com/ (accessed on 12 February 2025).
- Fertsch, M.; Stachowiak, A.; Oleśków-Szłapka, J. Innovations-Changes in the Environment of the Production Planning Process in Enterprises. In Proceedings of the International Scientific-Technical Conference MANUFACTURING, Poznan, Poland, 14–16 May 2024; Springer: Cham, Switzerland, 2024; pp. 201–212. [Google Scholar]
- Trauer, J.; Schweigert-Recksiek, S.; Engel, C.; Spreitzer, K.; Zimmermann, M. What is a digital twin?–definitions and insights from an industrial case study in technical product development. In Proceedings of the Design Society: DESIGN Conference, Online, 25 October 2020; Cambridge University Press: Cambridge, UK, 2020; Volume 1, pp. 757–766. [Google Scholar]
- Javaid, M.; Haleem, A.; Suman, R. Digital twin applications toward industry 4.0: A review. Cogn. Robot. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Pronost, G.; Mayer, F.; Camargo, M.; Dupont, L. Digital Twins along the product lifecycle: A systematic literature review of applications in manufacturing. Digit. Twin 2024, 3, 3. [Google Scholar] [CrossRef]
- Liang, J.; Lu, Y.; Yin, G.; Fang, Z.; Zhuang, W.; Ren, Y.; Xu, L.; Li, Y. A distributed integrated control architecture of AFS and DYC based on MAS for distributed drive electric vehicles. IEEE Trans. Veh. Technol. 2021, 70, 5565–5577. [Google Scholar] [CrossRef]
- Kargar, M.; Zhang, C.; Song, X. Integrated optimization of power management and vehicle motion control for autonomous hybrid electric vehicles. IEEE Trans. Veh. Technol. 2023, 72, 11147–11155. [Google Scholar] [CrossRef]
- Liang, J.; Lu, Y.; Wang, F.; Yin, G.; Zhu, X.; Li, Y. A robust dynamic game-based control framework for integrated torque vectoring and active front-wheel steering system. IEEE Trans. Intell. Transp. Syst. 2023, 24, 7328–7341. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Zhao, X.; Zheng, Z. Path tracking and Handling Stability Coordinated Control of 4WS and DYC for Distributed in-Wheel Motor Drive Electric Vehicle Under Extreme Conditions. IEEE Trans. Veh. Technol. 2024, 73, 18402–18417. [Google Scholar] [CrossRef]
- Jin, L.; Zhai, X.; Wang, K.; Zhang, K.; Wu, D.; Nazir, A.; Jiang, J.; Liao, W.H. Big data, machine learning, and digital twin assisted additive manufacturing: A review. Mater. Des. 2024, 244, 113086. [Google Scholar] [CrossRef]
- Formentini, G.; Boix Rodríguez, N.; Favi, C. Design for manufacturing and assembly methods in the product development process of mechanical products: A systematic literature review. Int. J. Adv. Manuf. Technol. 2022, 120, 4307–4334. [Google Scholar] [CrossRef]
- Bouissiere, F.; Cuiller, C.; Dereux, P.E.; Malchair, C.; Favi, C.; Formentini, G. Conceptual design for assembly in aerospace industry: A method to assess manufacturing and assembly aspects of product architectures. In Proceedings of the Design Society: International Conference on Engineering Design, Delft, The Netherlands, 5–8 August 2019; Cambridge University Press: Cambridge, UK, 2019; Volume 1, pp. 2961–2970. [Google Scholar]
- Formentini, G.; Favi, C.; Cuiller, C.; Dereux, P.E.; Bouissiere, F.; Jurbert, C. Conceptual design for assembly in aerospace industry: Sensitivity analysis of mathematical framework and design parameters. Proc. Des. Soc. 2021, 1, 731–740. [Google Scholar] [CrossRef]
- Tang, H. An integrated product-process hierarchical modeling method for development of complex assembly manufacturing systems. Procedia CIRP 2018, 76, 2–6. [Google Scholar] [CrossRef]
- Manimuthu, A.; Venkatesh, V.; Shi, Y.; Sreedharan, V.R.; Koh, S.L. Design and development of automobile assembly model using federated artificial intelligence with smart contract. Int. J. Prod. Res. 2022, 60, 111–135. [Google Scholar] [CrossRef]
- Kshatra, D.P.; Akhil, S.; Kiran, U.; Vineeth, Y. Process Design and system Layout for an automobile Manufacturing and assembly plant. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 440–446. [Google Scholar] [CrossRef]
- Arifin, Z.; Prasetyo, S.D.; Prabowo, A.R.; Cho, J.H. Preliminary design for assembling and manufacturing sports equipment: A study case on Aerobic Walker. Int. J. Mech. Eng. Robot. Res. 2021, 10, 107–115. [Google Scholar] [CrossRef]
- Sali, M. Designing an Innovative Modular Platform for Sports Car Using the Generative Design Method. Doctoral Dissertation, University of Bologna, Bologna, Italy, 2024. [Google Scholar]
- Demoly, F.; Yan, X.T.; Eynard, B.; Gomes, S.; Kiritsis, D. Integrated product relationships management: A model to enable concurrent product design and assembly sequence planning. J. Eng. Des. 2012, 23, 544–561. [Google Scholar] [CrossRef]
- Enomoto, A.; Hayashi, N.; Inoue, R.; Tsutsumi, D.; Kajita, D.; Nakasu, N. Near-Optimal Assembly Task Sequencing and Allocation Method for Multi-Arm Robot System. In Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Tram, A.V.N.; Raweewan, M. Optimal task allocation in human-robotic assembly processes. In Proceedings of the 2020 5th International Conference on Robotics and Automation Engineering (ICRAE), Singapore, 20–22 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 158–162. [Google Scholar]
- Culbertson, P.; Bandyopadhyay, S.; Schwager, M. Multi-Robot Assembly Sequencing via Discrete Optimization. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 6502–6509. [Google Scholar] [CrossRef]
- Liu, R.; Chen, A.; Zhao, W.; Liu, C. Physics-Aware Combinatorial Assembly Planning using Deep Reinforcement Learning. arXiv 2024, arXiv:2408.10162. [Google Scholar]
- Paehler, L.; Matthiesen, S. Mapping the landscape of product models in embodiment design. Res. Eng. Des. 2024, 35, 289–310. [Google Scholar] [CrossRef]
- Design Cockpit 43. IILS Ingenieurgesellschaft für Intelligente Lösungen und Systeme mbH, Trochtelfingen, Germany. Available online: https://www.iils.de/ (accessed on 18 February 2025).
- Rudolph, S. Übertragung von Ähnlichkeitsbegriffen. Habilitation Thesis, Fakultät Luft- und Raumfahrttechnik und Geodäsie, Universität Stuttgart, Stuttgart, Germany, 2002. [Google Scholar]
- Neumaier, M.; Kranemann, S.; Kazmeier, B.; Rudolph, S. Automated Piping in an Airbus A320 Landing Gear Bay Using Graph-Based Design Languages. Aerospace 2022, 9, 140. [Google Scholar] [CrossRef]
- Zech, A.; Stetter, R.; Rudolph, S.; Till, M. Capturing the Design Rationale in Model-Based Systems Engineering of Geo-Stations. Proc. Des. Soc. 2022, 2, 2015–2024. [Google Scholar] [CrossRef]
- Elwert, M.; Ramsaier, M.; Eisenbart, B.; Stetter, R.; Till, M.; Rudolph, S. Digital Function Modeling in Graph-Based Design Languages. Appl. Sci. 2022, 12, 5301. [Google Scholar] [CrossRef]
- Open Cascade, Open Cascade SAS, Guyancourt, France. 2025. Available online: https://www.opencascade.com (accessed on 12 February 2025).
- CATIA, Dassault Systèmes, Vélizy-Villacoublay, France. 2025. Available online: https://www.3ds.com/products-services/catia/ (accessed on 12 February 2025).
- Ansys, Ansys, Inc., Canonsburg, Pennsylvania, USA. 2025. Available online: https://www.ansys.com (accessed on 12 February 2025).
- Abaqus FEA, Dassault Systèmes, Vélizy-Villacoublay, France. 2025. Available online: https://www.simulia.com (accessed on 12 February 2025).
- Microsoft Excel, Microsoft Corporation, Redmond, Washington, USA. 2025. Available online: https://microsoft.com/en-us/microsoft-365/excel (accessed on 12 February 2025).
- PTC Creo, PTC Inc., Boston, Massachusetts, USA. 2025. Available online: https://ptc.com/en/products/cad/creo/ (accessed on 12 February 2025).
- Holder, K.; Zech, A.; Ramsaier, M.; Stetter, R.; Niedermeier, H.P.; Rudolph, S.; Till, M. Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages. Appl. Sci. 2017, 7, 1112. [Google Scholar] [CrossRef]
- Tian, Y.; Willis, K.D.; Al Omari, B.; Luo, J.; Ma, P.; Li, Y.; Javid, F.; Gu, E.; Jacob, J.; Sueda, S.; et al. ASAP: Automated sequence planning for complex robotic assembly with physical feasibility. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 4380–4386. [Google Scholar]
- Abdullah, M.A.; Ab Rashid, M.F.F.; Ghazalli, Z. Optimization of Assembly Sequence Planning Using Soft Computing Approaches: A Review. Arch. Comput. Methods Eng. 2019, 26, 461–474. [Google Scholar] [CrossRef]
- Yu, J.; Yu, J.; Wang, C.; Wang, C. Method for discriminating geometric feasibility in assembly planning based on extended and turning interference matrix. Int. J. Adv. Manuf. Technol. 2013, 67, 1867–1882. [Google Scholar] [CrossRef]
- Sınanoğlu, C.; Börklü, H.R. An assembly sequence-planning system for mechanical parts using neural network. Assem. Autom. 2005, 25, 38–52. [Google Scholar] [CrossRef]
- Syska, A. Produktionsmanagement: Das A–Z Wichtiger Methoden und Konzepte für die Produktion von Heute; Gabler Verlag Wiesbaden: Wiesbaden, Germany, 2006; p. 188. [Google Scholar] [CrossRef]
- Bendowska, K.; Zawadzki, P. Development and verification of a simulation model of an automated assembly line. Appl. Sci. 2023, 13, 10142. [Google Scholar] [CrossRef]
- Trauer, J.; Pfingstl, S.; Finsterer, M.; Zimmermann, M. Improving Production Efficiency with a Digital Twin Based on Anomaly Detection. Sustainability 2021, 13, 10155. [Google Scholar] [CrossRef]
- Došilović, F.K.; Brčić, M.; Hlupić, N. Explainable artificial intelligence: A survey. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 210–215. [Google Scholar]
- Arff, B.; Haasis, J.; Thomas, J.; Bonenberger, C.; Höpken, W.; Stetter, R. Analysis and visualization of production bottlenecks as part of a digital twin in industrial IoT. Appl. Sci. 2023, 13, 3525. [Google Scholar] [CrossRef]
- Larsen, P.G.; Fitzgerald, J.; Woodcock, J.; Fritzson, P.; Brauer, J.; Kleijn, C.; Lecomte, T.; Pfeil, M.; Green, O.; Basagiannis, S.; et al. Integrated tool chain for model-based design of Cyber-Physical Systems: The INTO-CPS project. In Proceedings of the 2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), Vienna, Austria, 11 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Saft, P.; Pfeil, M.; Stetter, R.; Till, M.; Rudolph, S. Integration of geometry modelling and behavior simulation based on graph-based design languages and functional mockup units. Procedia CIRP 2024, 128, 310–315. [Google Scholar] [CrossRef]
- Elsheikh, A.; Awais, M.U.; Widl, E.; Palensky, P. Modelica-enabled rapid prototyping of cyber-physical energy systems via the functional mockup interface. In Proceedings of the 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), Berkeley, CA, USA, 20 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6. [Google Scholar]
- Rackauckas, C.; Gwozdz, M.; Jain, A.; Ma, Y.; Martinuzzi, F.; Rajput, U.; Saba, E.; Shah, V.B.; Anantharaman, R.; Edelman, A.; et al. Composing modeling and simulation with machine learning in Julia. In Proceedings of the 2022 Annual Modeling and Simulation Conference (ANNSIM), San Diego, CA, USA, 18–20 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–17. [Google Scholar]
- Falay, B.; Wilfling, S.; Alfalouji, Q.; Exenberger, J.; Schranz, T.; Legaard, C.M.; Leusbrock, I.; Schweiger, G. Coupling physical and machine learning models: Case study of a single-family house. In Proceedings of the Modelica Conferences, Linköping, Sweden, 20–24 September 2021; pp. 335–341. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuchter, T.; Till, M.; Stetter, R.; Rudolph, S. Digital Integrated Design and Assembly Planning Processes for Sports Vehicles Using the Example of a Skateboard. Vehicles 2025, 7, 22. https://doi.org/10.3390/vehicles7010022
Schuchter T, Till M, Stetter R, Rudolph S. Digital Integrated Design and Assembly Planning Processes for Sports Vehicles Using the Example of a Skateboard. Vehicles. 2025; 7(1):22. https://doi.org/10.3390/vehicles7010022
Chicago/Turabian StyleSchuchter, Timo, Markus Till, Ralf Stetter, and Stephan Rudolph. 2025. "Digital Integrated Design and Assembly Planning Processes for Sports Vehicles Using the Example of a Skateboard" Vehicles 7, no. 1: 22. https://doi.org/10.3390/vehicles7010022
APA StyleSchuchter, T., Till, M., Stetter, R., & Rudolph, S. (2025). Digital Integrated Design and Assembly Planning Processes for Sports Vehicles Using the Example of a Skateboard. Vehicles, 7(1), 22. https://doi.org/10.3390/vehicles7010022