NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services
Abstract
:1. Introduction
2. Background
2.1. Cellular Vehicle to Everything (C-V2X)
2.2. 5G-V2X
2.3. Overview of Sidelink Technology
2.4. Sidelink in 5G-V2X Mode 2
3. Literature Review
4. Performance Evaluation
4.1. Simulation Settings
4.2. Performance Metrics
- Packet Reception Rate (PRR): PRR is the ratio of all packets received (R) to all packets sent () from the sources.
- Throughput: The rate at which information is sent through the network. The unit is Kbps.
- Latency: The amount of time that passes after a data packet transfer instruction before it starts.
4.3. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronyms | |
3GPP | Third Generation Partnership Project. |
BS | Base Station. |
C-V2X | Cellular Vehicle-to-Everything. |
CPOFDM | Cyclic Prefix Orthogonal Frequency-Division Multiplexing. |
DENM | Decentralized Environmental Messages. |
DL | Downlink. |
DMRS | Demodulation Reference Signal. |
LTE | Long-Term Evolution. |
NR | New Radio. |
OFDM | Orthogonal Frequency-Division Multiplexing. |
PRB | Physical Resource Block. |
PSBCH | Physical Sidelink Broadcast Channel. |
PSCCH | Physical Sidelink Control Channel. |
PSSCH | Physical Sidelink Shared Channel. |
QAM | Quadrature Amplitude Modulation. |
QPSK | Quadrature Phase Shift Keying |
RB | Resource Block. |
RR | Radio Resources. |
RSRP | Reference Signal Received Power. |
SCFDMA | Single Carrier Frequency Division Multiple Access. |
SCI | Sidelink Control Information. |
SPS | Semi Persistent Scheduling. |
TB | Transport Block. |
UE | User Equipment. |
UL | Uplink. |
V2V | Vehicle-to-Vehicle. |
V2X | Vehicle-to-Everything. |
References
- Tabassum, M.; Oliveira, A. Cyber-resilient routing for internet of vehicles networks during black hole attack. Int. J. Wirel. Microw. Technol. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Campolo, C.; Molinaro, A.; Romeo, F.; Bazzi, A.; Berthet, A.O. 5G NR V2X: On the impact of a flexible numerology on the autonomous sidelink mode. In Proceedings of the 2019 IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 102–107. [Google Scholar]
- Dixit, A.; Chidambaram, R.K.; Allam, Z. Safety and risk analysis of autonomous vehicles using computer vision and neural networks. Vehicles 2021, 3, 595–617. [Google Scholar] [CrossRef]
- Adelantado, F.; Ammouriova, M.; Herrera, E.; Juan, A.A.; Shinde, S.S.; Tarchi, D. Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities. Vehicles 2022, 4, 1223–1245. [Google Scholar] [CrossRef]
- Kim, J.; Noh, G.; Kim, T.; Chung, H.; Kim, I. Link-level performance evaluation of mmwave 5G NR sidelink communications. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 1482–1485. [Google Scholar]
- Bazzi, A.; Berthet, A.O.; Campolo, C.; Masini, B.M.; Molinaro, A.; Zanella, A. On the design of sidelink for cellular V2X: A literature review and outlook for future. IEEE Access 2021, 9, 97953–97980. [Google Scholar] [CrossRef]
- Molina-Masegosa, R.; Gozalvez, J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications. IEEE Veh. Technol. Mag. 2017, 12, 30–39. [Google Scholar] [CrossRef]
- Campolo, C.; Todisco, V.; Molinaro, A.; Berthet, A.; Bartoletti, S.; Bazzi, A. Improving resource allocation for beyond 5G V2X sidelink connectivity. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; pp. 55–60. [Google Scholar]
- 3GPP TR 38.885 V16.0.0; Study on NR Vehicle-to-Everything (V2X); Alliance for Telecommunications Industry Solutions: Washington, DC, USA, 2019.
- Romeo, F.; Campolo, C.; Molinaro, A.; Berthet, A.O. Denm repetitions to enhance reliability of the autonomous mode in NR V2X sidelink. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Naik, G.; Choudhury, B.; Park, J.-M. IEEE 802.11 bd & 5G NR V2X: Evolution of radio access technologies for V2X communications. IEEE Access 2019, 7, 70169–70184. [Google Scholar]
- Papathanassiou, A.; Khoryaev, A. Cellular V2X as the essential enabler of superior global connected transportation services. IEEE 5G Tech Focus 2017, 1, 1–2. [Google Scholar]
- Shrestha, R.; Nam, S.Y.; Bajracharya, R.; Kim, S. Evolution of V2X communication and integration of blockchain for security enhancements. Electronics 2020, 9, 1338. [Google Scholar] [CrossRef]
- Filippi, A.; Moerman, K.; Martinez, V.; Turley, A.; Haran, O.; Toledano, R. IEEE 802. 11p ahead of LTE-V2V for safety applications. Autotalks NXP 2017, 1, 1–19. [Google Scholar]
- Bartoletti, S.; Decarli, N.; Masini, B.M. Sidelink 5G-V2X for integrated sensing and communication: The impact of resource allocation. In Proceedings of the 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Republic of Korea, 16–20 May 2022; pp. 79–84. [Google Scholar]
- Todisco, V.; Bartoletti, S.; Campolo, C.; Molinaro, A.; Berthet, A.O.; Bazzi, A. Performance analysis of sidelink 5G-V2X mode 2 through an open-source simulator. IEEE Access 2021, 9, 145648–145661. [Google Scholar] [CrossRef]
- Mishra, D.; Trotta, A.; Traversi, E.; Di Felice, M.; Natalizio, E. Cooperative cellular UAV-to-everything (C-U2X) communication based on 5G sidelink for UAV swarms. Comput. Commun. 2022, 192, 173–184. [Google Scholar] [CrossRef]
- Alrabady, A.I.; Mahmud, S.M. Analysis of attacks against the security of keyless-entry systems for vehicles and suggestions for improved designs. IEEE Trans. Veh. Technol. 2005, 54, 41–50. [Google Scholar] [CrossRef]
- Garcia, M.H.C.; Molina-Galan, A.; Boban, M.; Gozalvez, J.; Coll-Perales, B.; Şahin, T.; Kousaridas, A. A tutorial on 5G NR V2X communications. IEEE Commun. Surv. Tutor. 2021, 23, 1972–2026. [Google Scholar] [CrossRef]
- Lien, S.-Y.; Deng, D.-J.; Lin, C.-C.; Tsai, H.-L.; Chen, T.; Guo, C.; Cheng, S.-M. 3GPP NR sidelink transmissions toward 5G V2X. IEEE Access 2020, 8, 35368–35382. [Google Scholar] [CrossRef]
- Ganesan, K.; Lohr, J.; Mallick, P.B.; Kunz, A.; Kuchibhotla, R. NR sidelink design overview for advanced V2X service. IEEE Internet Things Mag. 2020, 3, 26–30. [Google Scholar] [CrossRef]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G evolution: A view on 5G cellular technology beyond 3GPP release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Bazzi, A. Congestion control mechanisms in IEEE 802.11 p and sidelink C-V2X. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 1125–1130. [Google Scholar]
- Bonjorn, N.; Foukalas, F.; Pop, P. Enhanced 5G V2X services using sidelink device-to-device communications. In Proceedings of the 2018 17th Annual Mediterranean ad Hoc Networking Workshop (Med-Hoc-Net), Capri Island, Italy, 20–22 June 2018; pp. 1–7. [Google Scholar]
- Hasan, M.; Mohan, S.; Shimizu, T.; Lu, H. Securing vehicle-to-everything (V2X) communication platforms. IEEE Trans. Intell. Veh. 2020, 5, 693–713. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Shea, R.; Cai, W.; Wang, Z.; Ran, Y. Intelligent resource management for 5G. Wirel. Netw. 2020, 26, 1535–1536. [Google Scholar] [CrossRef]
- Honarvar, R.; Zolghadrasli, A.; Monemi, M. Context-oriented performance evaluation of network selection algorithms in 5G heterogeneous networks. J. Netw. Comput. Appl. 2022, 202, 103358. [Google Scholar] [CrossRef]
- Mizmizi, M.; Linsalata, F.; Brambilla, M.; Morandi, F.; Dong, K.; Magarini, M.; Nicoli, M.; Khormuji, M.N.; Wang, P.; Pitaval, R.A.; et al. Fastening the initial access in 5G NR sidelink for 6G V2X networks. Veh. Commun. 2022, 33, 100402. [Google Scholar] [CrossRef]
- Petrov, T.; Pocta, P.; Kovacikova, T. Benchmarking 4G and 5G-Based Cellular-V2X for Vehicle-to-Infrastructure Communication and Urban Scenarios in Cooperative Intelligent Transportation Systems. Appl. Sci. 2022, 12, 9677. [Google Scholar] [CrossRef]
- Ghodhbane, C.; Kassab, M.; Maaloul, S.; Aniss, H.; Berbineau, M. A Study of LTE-V2X Mode 4 Performances in a Multiapplication Context. IEEE Access 2022, 10, 63579–63591. [Google Scholar] [CrossRef]
- Karoui, M.; Freitas, A.; Chalhoub, G. Performance comparison between LTE-V2X and ITS-G5 under realistic urban scenarios. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; IEEE: New York, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Petrov, T.; Sevcik, L.; Pocta, P.; Dado, M. A performance benchmark for dedicated short-range communications and lte-based cellular-v2x in the context of vehicle-to-infrastructure communication and urban scenarios. Sensors 2021, 21, 5095. [Google Scholar] [CrossRef] [PubMed]
- Maglogiannis, V.; Naudts, D.; Hadiwardoyo, S.; Akker, D.V.D.; Marquez-Barja, J.; Moerman, I. Experimental V2X evaluation for C-V2X and ITS-G5 technologies in a real-life highway environment. IEEE Trans. Netw. Serv. Manag. 2021, 19, 1521–1538. [Google Scholar] [CrossRef]
- Zhao, J.; Gai, X.; Luo, X. Performance Comparison of Vehicle Networking Based on DSRC and LTE Technology. In Proceedings of the International Conference on Intelligent Transportation Engineering, Beijing, China, 17–19 September 2021; Springer Nature Singapore: Singapore, 2021; pp. 730–746. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Simulator | NS-3/5G-LENA/SUMO | - |
Packet Size | 500 | byte |
Data Rate | 16 | Kbps |
Simulation Time | 20 | s |
Inter-Vehicle Distance | 50, 100, 150, 200 | meter |
Inter-Lane Distance | 4 | meter |
Highway Length | 10 | kilometer |
Number of Lanes (Urban) | 3 | - |
Number of Lanes (Highway) | 5 | - |
Number of Vehicles per Lane (Urban) | 2, 3, 5, 7, 8 | - |
Number of Vehicles per Lane (Highway) | 2, 4, 6, 8, 10 | - |
Average Speed (Urban Scenario) | 20, 25, 30 | mph |
Average Speed (Highway Scenario) | 40, 60, 80 | mph |
Sidelink Activation Time | 1 | ms |
Sidelink Bandwidth | 40 | MHz |
Transmission Power | 23 | dBm |
Resource Reservation Period | 100 | ms |
Resource Update Period | 500 | ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassum, M.; Bastos, F.H.; Oliveira, A.; Klautau, A. NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services. Vehicles 2023, 5, 1692-1706. https://doi.org/10.3390/vehicles5040092
Tabassum M, Bastos FH, Oliveira A, Klautau A. NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services. Vehicles. 2023; 5(4):1692-1706. https://doi.org/10.3390/vehicles5040092
Chicago/Turabian StyleTabassum, Mehnaz, Felipe Henrique Bastos, Aurenice Oliveira, and Aldebaro Klautau. 2023. "NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services" Vehicles 5, no. 4: 1692-1706. https://doi.org/10.3390/vehicles5040092
APA StyleTabassum, M., Bastos, F. H., Oliveira, A., & Klautau, A. (2023). NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services. Vehicles, 5(4), 1692-1706. https://doi.org/10.3390/vehicles5040092