A NARX Model to Predict Cabin Air Temperature to Ameliorate HVAC Functionality
Abstract
:1. Introduction
2. Predictive Model—CATOP
2.1. Modelling
3. Optimal CATOP Criteria
3.1. CATOP Element—EST
3.2. CATOP Element—ACRFP
3.3. Smoothness Measure—EST and ACRFP
4. Prediction of CAT
4.1. Estimation of Future Inputs—NARX DL Model
4.2. Prediction of Outputs—NARX DL Model
4.3. Implementation—HVAC Criteria
4.4. Estimation of Optimal CAT
Algorithm to Estimate CAT
- Assuming the set CAT at step k was , if the eligible CAT’s were either +1, , or −1, then the highest magnitude among the three was selected as , for the case and selected the lower value as for the case .
- We chose the value of closer to . If this resulted in two values, the higher value was considered for the case , and the lower value for the case
- If the eligible CATs were neither +1, nor −1, then .
- If for more than 1E3 steps (1 step = 10 m), then = +1 for the case or − 1 for .
5. Computational Analysis—Results
5.1. Data Retrieval
5.2. NARX DL Model—Prediction of CATOP
5.3. Estimation of CAT
6. Discussion
7. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Adaptive cruise control |
ACCSSP | Adaptive cruise control set speed profile (MPH) |
ACRFP | Air conditioning refrigerant fluid pressure (PSI) |
ACS | Air conditioning system |
ATP | Atmospheric pressure (~1.01325 bar) |
CAN | Controller area network |
CAT | Cabin air temperature (°F) |
CATOP | Cabin air temperature operating point |
DBV | Driver behaviour vector |
DL | Deep learning |
EAT | External air temperature (°F) |
EOC | Engine operating conditions |
EOP | Engine operating point |
EST | Engine surface temperature (°F) |
FOD | First-order derivative |
GMC | General Motors Company |
HUM | Humidity (%rh) |
HVAC | Heating, ventilation, and air conditioning |
ISB | Ideal steering behaviour |
LAT | Lateral acceleration (m·) |
LOT | Longitudinal acceleration (m·) |
MSE | Mean square error |
NARX | Nonlinear autoregressive network with exogenous inputs |
RMSE | Root mean square error |
RRC | Radius of road curvature (m) |
SL | Speed limit (MPH) |
SNR | Signal to noise ratio |
SSE | Sum of squares of error |
StdDev | Standard Deviation |
VLV | Vehicle level vectors |
YAR | Yaw Rate (rad·) |
Nomenclature | |
Area of vehicle cross-section () | |
bar | 1 bar = 100 kPa |
Aerodynamic drag coefficient. 2020 Cadillac CT5 (~0.31) | |
°C | Centigrade |
deg· | Degrees per second |
°F | Fahrenheit |
g | Gravity (9.8 m·) |
Hz | Hertz |
Kg | Kilogram |
Km | Kilometres |
kPa | Kilo pascals |
Lateral acceleration at time step k (m·) | |
Longitudinal acceleration at time step k (m·) | |
Mass of the vehicle. 2020 Cadillac CT5 (kg) | |
Mass of the additional load (kg) | |
MPH | Miles per hour |
m | Metres |
Metre square | |
m· | Metres per second square. |
ms | Milli seconds |
Rolling coefficient (~0.013) | |
PSI | Pound per square inch |
rad | Radians |
rad· | Radians per second |
Radius of road curvature at time step k (m) | |
Density of air (~1.225 kg·) | |
s | Seconds |
Time step (s) | |
Incremental time step. (~300 ms) | |
Gradient of the terrain at time step k (rad) | |
Yaw rate at time step k (rad·) | |
%rh | Relative humidity (water vapour) |
References
- Holweg, M. The evolution of competition in the automotive industry. In Build to Order; Springer: London, UK, 2008; pp. 13–34. [Google Scholar]
- Farrington, R.; Rugh, J. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range (No. NREL/CP-540-28960); National Renewable Energy Lab: Golden, CO, USA, 2000.
- Khayyam, H.; Kouzani, A.Z.; Hu, E.J.; Nahavandi, S. Coordinated energy management of vehicle air conditioning system. Appl. Therm. Eng. 2011, 31, 750–764. [Google Scholar] [CrossRef]
- Johnson, V.H. Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach (No. 2002-01-1957); SAE Technical Paper; SAE International: Warrendale, PA, USA, 2002. [Google Scholar]
- Lee, J.; Kim, J.; Park, J.; Bae, C. Effect of the air-conditioning system on the fuel economy in a gasoline engine vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 66–77. [Google Scholar] [CrossRef]
- Khayyam, H. Adaptive intelligent control of vehicle air conditioning system. Appl. Therm. Eng. 2013, 51, 1154–1161. [Google Scholar] [CrossRef]
- Nasution, H. Development of fuzzy logic control for vehicle air conditioning system. Telkomnika 2008, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Khayyam, H.; Abawajy, J.; Jazar, R.N. Intelligent energy management control of vehicle air conditioning system coupled with engine. Appl. Therm. Eng. 2012, 48, 211–224. [Google Scholar] [CrossRef]
- Khayyam, H.; Kouzani, A.Z.; Hu, E.J. Reducing energy consumption of vehicle air conditioning system by an energy management system. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 752–757. [Google Scholar]
- Huang, K.D.; Tzeng, S.C.; Jeng, T.M.; Chiang, W.D. Air-conditioning system of an intelligent vehicle-cabin. Appl. Energy 2006, 83, 545–557. [Google Scholar] [CrossRef]
- Fayazbakhsh, M.A.; Bahrami, M. Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013; Volume 2013, p. 1507. [Google Scholar]
- Cvok, I.; Ratkovic, I.; Deur, J. Optimization of Control Parameters of Vehicle Air-Conditioning System for Maximum Efficiency (No. 2020-01-1242); SAE Technical Paper; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Kolachalama, S.; Malik, H. Predictive Model of Adaptive Cruise Control Speed to Enhance Engine Operating Conditions. Vehicles 2021, 3, 749–763. [Google Scholar] [CrossRef]
- Kolachalama, S.; Lakshmanan, S. Using Deep Learning to Predict the Engine Operating Point in Real-Time (No. 2021-01-0186); SAE Technical Paper; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Wang, W.; Xi, J.; Chen, H. Modeling and recognizing driver behavior based on driving data: A survey. Math. Probl. Eng. 2014, 2014, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kolachalama, S.; Kuppa, K.; Mattam, D.; Shukla, M. Thermal Analysis of Radiator Core in Heavy Duty Automobile. In Proceedings of the Heat Transfer Summer Conference, Jacksonville, FL, USA, 10–14 August 2008; Volume 48487, pp. 123–127. [Google Scholar]
- Eathakota, V.; Singh, A.K.; Kolachalam, S.; Krishna, K.M. Determination of optimally stable posture for force actuator based articulated suspension for rough terrain mobility. In Proceedings of the FIRA RoboWorld Congress, Bangalore, India, 15–17 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 154–161. [Google Scholar]
- Talom, H.L.; Beyene, A. Heat recovery from automotive engine. Appl. Therm. Eng. 2009, 29, 439–444. [Google Scholar] [CrossRef]
- Yan, X.; Fleming, J.; Lot, R. A/C energy management and vehicle cabin thermal comfort control. IEEE Trans. Veh. Technol. 2018, 67, 11238–11242. [Google Scholar] [CrossRef]
- Roberts, A.; Brooks, R.; Shipway, P. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Convers. Manag. 2014, 82, 327–350. [Google Scholar] [CrossRef] [Green Version]
- Borman, G.; Nishiwaki, K. Internal combustion engine heat transfer. Prog. Energy Combust. Sci. 1987, 13, 1–46. [Google Scholar] [CrossRef]
- Autozone: Air Conditioning Pressure Chart; R134a-Refrigerant; California Air Ressources Board (CARB): Sacramento, CA, USA, 2009.
- Kolachalama, S.; Hay, C.L.; Mushtarin, T.; Todd, N.; Heitman, J.; Hermiz, S. An Algorithm to Estimate Steering Behavior Using Vehicle Radius Of Curvature, 647068, Research Disclosure; Questel Ireland Ltd.: Paris, France, 2018. [Google Scholar]
- Xing, W.; Chen, H.; Ding, H. The application of controller area network on vehicle. In Proceedings of the IEEE International Vehicle Electronics Conference (IVEC’99)(Cat. No. 99EX257), Changchun, China, 9 September 1999; pp. 455–458. [Google Scholar]
- Gallardo, F.B. Extraction and Analysis of Car Driving Data Via OBD II. Ph.D. Thesis, Miguel Hernández University of Elche, Alicante, Spain, 2018. [Google Scholar]
- Benmimoun, M.; Pütz, A.; Zlocki, A.; Eckstein, L. Effects of acc and fcw on speed, fuel consumption, and driving safety. In Proceedings of the 2012 IEEE Vehicular Technology Conference (VTC Fall), Quebec City, QC, Canada, 3–6 September 2012; pp. 1–6. [Google Scholar]
- Eathakota, V.P.; Kolachalama, S.; Krishna, K.M.; Sanan, S. Optimal posture control for force actuator based articulated suspension vehicle for rough terrain mobility. In Advances in Mobile Robotics; World Scientific: Coimbra, Portugal, 2008; pp. 760–767. [Google Scholar]
(s) | (km) | (°F) | (MPH) | |
+ + (m·) | ||||
, | ||||
g = 9.81 m· | = 0.013 | = 1.225 kg· | = 0.31 | = 1.71 |
2020 Cadillac CT5: = 1769.69 kg, = 78.7 kg (Load) |
Step | Odometer (km) | Speed (MPH) | RRC (m) | YAR | LAT | LOT | EAT (°F) | CAT (°F) |
---|---|---|---|---|---|---|---|---|
15,000 | 70 | 8304.140 | 0.216 | 0.1179 | 0.4375 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.1 | 70 | 8304.140 | 0.216 | 0.1179 | 0.375 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.2 | 70 | 8304.140 | 0.216 | 0.1179 | 0.3125 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.3 | 70 | 9342.157 | 0.192 | 0.1048 | −0.125 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.4 | 70 | 24,912.42 | 0.072 | 0.0393 | −0.1875 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.5 | 70 | 74,737.261 | 0.024 | 0.0131 | −0.0625 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.6 | 70 | 74,737.261 | 0.024 | 0.0131 | 0.25 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.7 | 70 | 37,368.630 | 0.048 | 0.0262 | 0.25 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.8 | 70 | 24,912.420 | 0.072 | 0.0393 | 0.1875 | 78.5, 38.3 | [65 70], [70 75] | |
15,000.9 | 70 | 24,912.420 | 0.072 | 0.0393 | 0.1875 | 78.5, 38.3 | [65 70], [70 75] | |
15,001 | 70 | 9342.157 | 0.192 | 0.1048 | 0.3125 | 78.5, 38.3 | [65 70], [70 75] |
CAT | A1 | A2 | B | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°F | Area | R | SSE | RMSE | Area | R | SSE | RMSE | Area | R | SSE | RMSE | |||
ACCSSP = 70 MPH; EAT = 78.75 °F | |||||||||||||||
65 | 114.5 | 0.994 | 0.986 | 1.495 | 0.194 | 1931 | 0.998 | 0.994 | 61.03 | 1.242 | 2252 | 0.995 | 0.989 | 158.9 | 2.004 |
66 | 175.2 | 0.995 | 0.987 | 2.749 | 0.264 | 1994 | 0.998 | 0.994 | 64.36 | 1.275 | 2365 | 0.996 | 0.989 | 167.8 | 2.059 |
67 | 216.5 | 0.992 | 0.979 | 6.555 | 0.407 | 2020 | 0.998 | 0.994 | 67.47 | 1.306 | 2379 | 0.996 | 0.990 | 149.4 | 1.943 |
68 | 203.8 | 0.992 | 0.981 | 5.391 | 0.369 | 1872 | 0.997 | 0.993 | 67.63 | 1.307 | 2399 | 0.996 | 0.990 | 155.5 | 1.983 |
69 | 178.2 | 0.993 | 0.982 | 3.933 | 0.315 | 1688 | 0.997 | 0.993 | 52.16 | 1.148 | 2402 | 0.996 | 0.990 | 167.6 | 2.058 |
70 | 201.9 | 0.995 | 0.986 | 3.773 | 0.309 | 1612 | 0.998 | 0.994 | 44.56 | 1.061 | 2416 | 0.996 | 0.990 | 162.6 | 2.027 |
ACCSSP = 70 MPH; EAT = 38.3 °F | |||||||||||||||
70 | 47.069 | 0.990 | 0.976 | 0.551 | 0.118 | 40.095 | 0.987 | 0.968 | 0.938 | 0.154 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
71 | 45.876 | 0.990 | 0.975 | 0.557 | 0.119 | 40.662 | 0.987 | 0.968 | 0.961 | 0.156 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
72 | 45.408 | 0.990 | 0.975 | 0.561 | 0.119 | 41.013 | 0.987 | 0.968 | 0.978 | 0.157 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
73 | 45.575 | 0.990 | 0.975 | 0.566 | 0.120 | 41.169 | 0.987 | 0.968 | 0.988 | 0.158 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
74 | 46.270 | 0.990 | 0.975 | 0.569 | 0.120 | 41.162 | 0.987 | 0.968 | 0.993 | 0.158 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
75 | 47.368 | 0.990 | 0.975 | 0.572 | 0.120 | 41.026 | 0.987 | 0.967 | 0.993 | 0.158 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
A1 | A2 | B | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area | R | SSE | RMSE | Area | R | SSE | RMSE | Area | R | SSE | RMSE | |||
ACCSSP = 70 MPH; EAT = 78.75 °F | ||||||||||||||
65 | 66 | 66 | 65 | 65 | 70 | 66 | 66 | 70 | 70 | 70 | 67 | 67 | 67 | 67 |
66 | 70 | 70 | 66 | 66 | 69 | 65 | 65 | 69 | 69 | 69 | 68 | 68 | 68 | 68 |
69 | 65 | 65 | 70 | 70 | 68 | 67 | 67 | 65 | 65 | 68 | 70 | 70 | 65 | 65 |
ACCSSP = 70 MPH; EAT = 38.3 °F | ||||||||||||||
72 | 70 | 70 | 70 | 70 | 70 | 71 | 71 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
73 | 71 | 71 | 71 | 71 | 71 | 70 | 70 | 71 | 71 | 71 | 71 | 71 | 71 | 71 |
71 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 | 72 |
CAT Matrix | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EAT = 78.75 (°F) | EAT = 38.3 (°F) | ||||||||||||||||||
66 | 66 | 66 | 68 | 68 | 65 | 66 | 66 | 68 | 66 | 70 | 70 | 70 | 70 | 70 | 70 | 72 | 70 | 71 | 73 |
67 | 67 | 67 | 66 | 69 | 66 | 67 | 67 | 66 | 67 | 71 | 71 | 71 | 71 | 71 | 71 | 70 | 71 | 72 | 74 |
65 | 65 | 65 | 67 | 70 | 67 | 65 | 65 | 67 | 65 | 72 | 72 | 72 | 72 | 72 | 72 | 71 | 72 | 70 | 75 |
Dataset 1—Summer Data (Date: 16 June 2020) | ||||||
Parameters | ACC Speed [25 55] MPH | ACC Speed [55 85] MPH | ||||
Inputs | Mean | StdDev | Variance | Mean | StdDev | Variance |
Odometer (km) | 16,047.528 | 36.052 | 0.002 | 14,774.200 | 707.602 | 0.048 |
Speed (MPH) | 39.342 | 8.948 | 0.227 | 64.739 | 6.843 | 0.106 |
LOT (m·) | 0.332 | 0.529 | 1.591 | −0.172 | 0.383 | −2.234 |
LAT (m·) | 0.457 | 0.523 | 1.145 | 0.249 | 0.320 | 1.284 |
YAR (deg·) | 0.018 | 0.036 | 1.998 | −0.067 | 0.726 | −10.784 |
EAT (°F) | 71.585 | 1.929 | 0.027 | 80.142 | 5.118 | 0.064 |
CAT (°F) | 82.800 | 4.856 | 0.059 | 66.922 | 1.719 | 0.026 |
Outputs | Mean | StdDev | Variance | Mean | StdDev | Variance |
EST (°F) | 198.931 | 2.649 | 0.013 | 195.183 | 17.056 | 0.087 |
ACRFP (PSI) | 160.584 | 22.056 | 0.137 | 165.131 | 21.673 | 0.131 |
Dataset 2—Winter Data (Date: 25 February 2021) | ||||||
Parameters | ACC Speed [25 55] MPH | ACC Speed [55 85] MPH | ||||
Inputs | Mean | StdDev | Variance | Mean | StdDev | Variance |
Odometer (km) | 24,875.333 | 10.030 | 0.000 | 24,785.630 | 5.258 | 0.000 |
Speed (MPH) | 42.973 | 7.216 | 0.168 | 68.626 | 6.253 | 0.091 |
LOT (m·) | −0.165 | 0.443 | −2.677 | −0.158 | 0.158 | −1.000 |
LAT (m·) | 0.159 | 0.252 | 1.581 | 0.066 | 0.193 | 2.910 |
YAR (deg·) | −0.114 | 0.397 | −3.492 | −0.083 | 0.285 | −3.443 |
EAT (°F) | 39.849 | 0.870 | 0.022 | 36.383 | 0.914 | 0.025 |
CAT (°F) | 74.436 | 7.293 | 0.098 | 77.420 | 5.449 | 0.070 |
Outputs | Mean | StdDev | Variance | Mean | StdDev | Variance |
EST (°F) | 201.779 | 3.994 | 0.020 | 201.033 | 4.350 | 0.022 |
ACRFP (PSI) | 47.309 | 3.417 | 0.072 | 40.335 | 0.684 | 0.017 |
(Date: 16 June 2020) | Data Set 1: NARX—DL Model Validation (Predicted-Actual) | |||||||
EST (°F) | ACRFP (PSI) | |||||||
ACCSSP (MPH) | CAT (°F) | EAT (°F) | RMSE | FOD | SNR | RMSE | FOD | SNR |
35 | 66 | 83.309 | 2.2057 | 1.5868 | 5.1067 | 14.0017 | 10.5611 | 16.1348 |
45 | 65 | 80.375 | 1.8169 | 1.4288 | 7.1183 | 10.8150 | 7.4388 | 12.1116 |
55 | 68 | 82.526 | 1.4794 | 1.0503 | 5.2231 | 9.5438 | 7.2012 | 20.3788 |
65 | 67 | 81.32 | 1.66 | 1.2953 | 12.7934 | 3.7248 | 2.7151 | 6.9461 |
75 | 70 | 86.081 | 1.2763 | 0.7945 | 5.7699 | 8.6413 | 5.2471 | 28.3001 |
(Date: 25 February 2021) | Data Set 2: NARX—DL Model Validation (Predicted-Actual) | |||||||
EST (°F) | ACRFP (PSI) | |||||||
ACCSSP (MPH) | CAT (°F) | EAT (°F) | RMSE | FOD | SNR | RMSE | FOD | SNR |
35 | 76 | 36.374 | 0.9528 | 0.6636 | 3.4284 | 2.9186 | 0.9376 | 1.3323 |
45 | 71 | 39.047 | 0.5678 | 0.3981 | 6.2342 | 0.0281 | 0.0148 | 1.7795 |
55 | 73 | 33.8 | 0.3916 | 0.2618 | 5.4806 | 0.0040 | 0.0007 | 0.3951 |
65 | 74 | 37.4 | 0.3080 | 0.2158 | 15.4239 | 0.0013 | 0.0007 | 1.3281 |
75 | 75 | 37.4 | 0.4556 | 0.3179 | 32.7227 | 0.0011 | 0.000 | 0.000 |
Parameter | EAT (°F) | CAT Profile (°F) | Area | Conformance | SSE | RMSE | ||
---|---|---|---|---|---|---|---|---|
ACCSSP = 35 MPH | ||||||||
EST [A1, A2] | 78.566 | 66 | 515.975 | −9.312 | 0.960 | 0.900 | 2.981 | 0.276 |
Predicted | 506.662 | 0.810 | 0.526 | 22.762 | 0.762 | |||
36.806 | 74 | 424.360 | 4.411 | 0.989 | 0.973 | 12.604 | 0.567 | |
Predicted | 428.771 | 0.992 | 0.980 | 11.889 | 0.551 | |||
ACRFP (B) | 78.566 | 66 | 1957.947 | −20.879 | 0.985 | 0.962 | 732.229 | 4.323 |
Predicted | 1937.067 | 0.983 | 0.958 | 810.917 | 4.550 | |||
36.806 | 74 | 28,924.676 | −4.548 | 0.982 | 0.954 | 1.384 | 0.188 | |
Predicted | 28,920.127 | 0.985 | 0.962 | 1.121 | 0.169 | |||
ACCSSP = 45 MPH | ||||||||
EST [A1, A2] | 71.384 | 65 | 350.128 | −54.605 | 0.974 | 0.934 | 11.985 | 0.553 |
Predicted | 295.523 | 0.981 | 0.952 | 8.216 | 0.458 | |||
33.8 | 71 | 8.335 | −4.436 | 0.997 | 0.994 | 0.000 | 0.000 | |
Predicted | 3.898 | 0.984 | 0.959 | 0.002 | 0.007 | |||
ACRFP (B) | 71.384 | 65 | 968.488 | 259.626 | 0.915 | 0.788 | 845.487 | 4.646 |
Predicted | 1228.114 | 0.977 | 0.944 | 491.012 | 3.540 | |||
33.8 | 71 | 29,057.213 | 0.462 | 0.998 | 0.996 | 0.000 | 0.000 | |
Predicted | 29,057.675 | 0.887 | 0.717 | 0.000 | 0.002 | |||
ACCSSP = 55 MPH | ||||||||
EST [A1, A2] | 70.997 | 65 | 658.373 | −72.241 | 0.969 | 0.922 | 4.957 | 0.356 |
Predicted | 586.131 | 0.969 | 0.924 | 5.472 | 0.374 | |||
33.8 | 73 | 307.908 | −1.912 | 0.967 | 0.917 | 1.839 | 0.217 | |
Predicted | 305.996 | 0.965 | 0.913 | 1.867 | 0.218 | |||
ACRFP (B) | 70.997 | 65 | 2928.211 | −229.571 | 0.970 | 0.925 | 2745.421 | 8.371 |
Predicted | 2698.639 | 0.974 | 0.936 | 2679.109 | 8.270 | |||
33.8 | 73 | 28,850.426 | −2.175 | 0.999 | 0.998 | 0.000 | 0.000 | |
Predicted | 28,848.251 | 0.997 | 0.993 | 0.000 | 0.001 | |||
ACCSSP = 65 MPH | ||||||||
EST [A1, A2] | 81.095 | 67 | 505.586 | −31.343 | 0.978 | 0.944 | 7.887 | 0.449 |
Predicted | 474.242 | 0.948 | 0.871 | 22.979 | 0.766 | |||
37.4 | 72 | 568.740 | 4.009 | 0.970 | 0.924 | 1.279 | 0.181 | |
Predicted | 572.750 | 0.968 | 0.921 | 1.292 | 0.182 | |||
ACRFP (B) | 81.095 | 67 | 3078.741 | 269.982 | 0.946 | 0.865 | 61.282 | 1.251 |
Predicted | 3348.724 | 0.961 | 0.901 | 92.636 | 1.538 | |||
37.4 | 72 | 28,851.571 | 0.180 | 0.912 | 0.779 | 0.000 | 0.000 | |
Predicted | 28,851.752 | 0.989 | 0.971 | 0.000 | 0.000 | |||
ACCSSP = 75 MPH | ||||||||
EST [A1, A2] | 84.4 | 68 | 639.694 | 246.732 | 0.952 | 0.880 | 7.089 | 0.425 |
Predicted | 886.427 | 0.952 | 0.879 | 28.418 | 0.852 | |||
37.40 | 70 | 669.610 | −5.7879 | 0.966 | 0.915 | 2.408 | 0.248 | |
Predicted | 663.822 | 0.967 | 0.917 | 2.350 | 0.245 | |||
ACRFP (B) | 84.4 | 68 | 2231.887 | −782.45 | 0.919 | 0.797 | 383.320 | 3.128 |
Predicted | 1449.436 | 0.909 | 0.773 | 1664.53 | 6.518 | |||
37.4 | 70 | 28,850.316 | 0.065 | 0.999 | 0.996 | 0.000 | 0.000 | |
Predicted | 28,850.381 | 0.925 | 0.813 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolachalama, S.; Malik, H. A NARX Model to Predict Cabin Air Temperature to Ameliorate HVAC Functionality. Vehicles 2021, 3, 872-889. https://doi.org/10.3390/vehicles3040052
Kolachalama S, Malik H. A NARX Model to Predict Cabin Air Temperature to Ameliorate HVAC Functionality. Vehicles. 2021; 3(4):872-889. https://doi.org/10.3390/vehicles3040052
Chicago/Turabian StyleKolachalama, Srikanth, and Hafiz Malik. 2021. "A NARX Model to Predict Cabin Air Temperature to Ameliorate HVAC Functionality" Vehicles 3, no. 4: 872-889. https://doi.org/10.3390/vehicles3040052
APA StyleKolachalama, S., & Malik, H. (2021). A NARX Model to Predict Cabin Air Temperature to Ameliorate HVAC Functionality. Vehicles, 3(4), 872-889. https://doi.org/10.3390/vehicles3040052